一、保存:
graph_util.convert_variables_to_constants 可以把当前session的计算图串行化成一个字节流(二进制),这个函数包含三个参数:参数1:当前活动的session,它含有各变量
参数2:GraphDef 对象,它描述了计算网络
参数3:Graph图中需要输出的节点的名称的列表
返回值:精简版的GraphDef 对象,包含了原始输入GraphDef和session的网络和变量信息,它的成员函数SerializeToString()可以把这些信息串行化为字节流,然后写入文件里:
constant_graph = graph_util.convert_variables_to_constants( sess, sess.graph_def , ['sum_operation'] ) with open( pbName, mode='wb') as f: f.write(constant_graph.SerializeToString())
需要指出的是,如果原始张量(包含在参数1和参数2中的组成部分)不参与参数3指定的输出节点列表所指定的张量计算的话,这些张量将不会存在返回的GraphDef对象里,也不会被串行化写入pb文件。
二、恢复:
恢复时,创建一个GraphDef,然后从上述的文件里加载进来,接着输入到当前的session:
graph0 = tf.GraphDef() with open( pbName, mode='rb') as f: graph0.ParseFromString( f.read() ) tf.import_graph_def( graph0 , name = '' )
三、代码:
import tensorflow as tf from tensorflow.python.framework import graph_util pbName = 'graphA.pb' def graphCreate() : with tf.Session() as sess : var1 = tf.placeholder ( tf.int32 , name='var1' ) var2 = tf.Variable( 20 , name='var2' )#实参name='var2'指定了操作名,该操作返回的张量名是在 #'var2'后面:0 ,即var2:0 是返回的张量名,也就是说变量 # var2的名称是'var2:0' var3 = tf.Variable( 30 , name='var3' ) var4 = tf.Variable( 40 , name='var4' ) var4op = tf.assign( var4 , 1000 , name = 'var4op1' ) sum = tf.Variable( 4, name='sum' ) sum = tf.add ( var1 , var2, name = 'var1_var2' ) sum = tf.add( sum , var3 , name='sum_var3' ) sumOps = tf.add( sum , var4 , name='sum_operation' ) oper = tf.get_default_graph().get_operations() with open( 'operation.csv','wt' ) as f: s = 'name,type,output\n' f.write( s ) for o in oper: s = o.name s += ','+ o.type inp = o.inputs oup = o.outputs for iip in inp : s #s += ','+ str(iip) for iop in oup : s += ',' + str(iop) s += '\n' f.write( s ) for var in tf.global_variables(): print('variable=> ' , var.name) #张量是tf.Variable/tf.Add之类操作的结果, #张量的名字使用操作名加:0来表示 init = tf.global_variables_initializer() sess.run( init ) sess.run( var4op ) print('sum_operation result is Tensor ' , sess.run( sumOps , feed_dict={var1:1}) ) constant_graph = graph_util.convert_variables_to_constants( sess, sess.graph_def , ['sum_operation'] ) with open( pbName, mode='wb') as f: f.write(constant_graph.SerializeToString()) def graphGet() : print("start get:" ) with tf.Graph().as_default(): graph0 = tf.GraphDef() with open( pbName, mode='rb') as f: graph0.ParseFromString( f.read() ) tf.import_graph_def( graph0 , name = '' ) with tf.Session() as sess : init = tf.global_variables_initializer() sess.run(init) v1 = sess.graph.get_tensor_by_name('var1:0' ) v2 = sess.graph.get_tensor_by_name('var2:0' ) v3 = sess.graph.get_tensor_by_name('var3:0' ) v4 = sess.graph.get_tensor_by_name('var4:0' ) sumTensor = sess.graph.get_tensor_by_name("sum_operation:0") print('sumTensor is : ' , sumTensor ) print( sess.run( sumTensor , feed_dict={v1:1} ) ) graphCreate() graphGet()
四、保存pb函数代码里的操作名称/类型/返回的张量:
operation name operation type output var1 Placeholder Tensor("var1:0" dtype=int32) var2/initial_value Const Tensor("var2/initial_value:0" shape=() dtype=int32) var2 VariableV2 Tensor("var2:0" shape=() dtype=int32_ref) var2/Assign Assign Tensor("var2/Assign:0" shape=() dtype=int32_ref) var2/read Identity Tensor("var2/read:0" shape=() dtype=int32) var3/initial_value Const Tensor("var3/initial_value:0" shape=() dtype=int32) var3 VariableV2 Tensor("var3:0" shape=() dtype=int32_ref) var3/Assign Assign Tensor("var3/Assign:0" shape=() dtype=int32_ref) var3/read Identity Tensor("var3/read:0" shape=() dtype=int32) var4/initial_value Const Tensor("var4/initial_value:0" shape=() dtype=int32) var4 VariableV2 Tensor("var4:0" shape=() dtype=int32_ref) var4/Assign Assign Tensor("var4/Assign:0" shape=() dtype=int32_ref) var4/read Identity Tensor("var4/read:0" shape=() dtype=int32) var4op1/value Const Tensor("var4op1/value:0" shape=() dtype=int32) var4op1 Assign Tensor("var4op1:0" shape=() dtype=int32_ref) sum/initial_value Const Tensor("sum/initial_value:0" shape=() dtype=int32) sum VariableV2 Tensor("sum:0" shape=() dtype=int32_ref) sum/Assign Assign Tensor("sum/Assign:0" shape=() dtype=int32_ref) sum/read Identity Tensor("sum/read:0" shape=() dtype=int32) var1_var2 Add Tensor("var1_var2:0" dtype=int32) sum_var3 Add Tensor("sum_var3:0" dtype=int32) sum_operation Add Tensor("sum_operation:0" dtype=int32)以上这篇Tensorflow 使用pb文件保存(恢复)模型计算图和参数实例详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月19日
2024年11月19日
- 柏菲·珞叔作品集《金色大厅2》限量开盘母带ORMCD[低速原抓WAV+CUE]
- Gareth.T《sad songs(Explicit)》[320K/MP3][29.03MB]
- Gareth.T《sad songs(Explicit)》[FLAC/分轨][152.85MB]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[320K/MP3][63.06MB]
- 龚玥《金装龚玥HQCD》头版限量[WAV分轨]
- 李小春《吻别》萨克斯演奏经典[原抓WAV+CUE]
- 齐秦《辉煌30年24K珍藏版》2CD[WAV+CUE]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[FLAC/分轨][321.47MB]
- 群星 《世界经典汽车音乐》 [WAV分轨][1G]
- 冷漠.2011 《冷漠的爱DSD》[WAV+CUE][1.2G]
- 陈明《流金岁月精逊【中唱】【WAV+CUE】
- 群星《Jazz-Ladies1-2爵士女伶1-2》HQCD/2CD[原抓WAV+CUE]
- 群星《美女私房歌》(黑胶)[WAV分轨]
- 郑源.2009《试音天碟》24BIT-96KHZ[WAV+CUE][1.2G]
- 飞利浦试音碟 《环球群星监听录》SACD香港版[WAV+CUE][1.1G]