本文参考github上SSD实现,对模型进行分析,主要分析模型组成及输入输出大小.SSD网络结构如下图:

基于Pytorch SSD模型分析

每输入的图像有8732个框输出;

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
#from layers import *
from data import voc, coco
import os
base = {
 '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
   512, 512, 512],
 '512': [],
}
extras = {
 '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
 '512': [],
}
mbox = {
 '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location
 '512': [],
}

VGG基础网络结构:

def vgg(cfg, i, batch_norm=False):
 layers = []
 in_channels = i
 for v in cfg:
  if v == 'M':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
  elif v == 'C':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
  else:
   conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
   if batch_norm:
    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
   else:
    layers += [conv2d, nn.ReLU(inplace=True)]
   in_channels = v
 pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
 conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
 conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
 layers += [pool5, conv6,
    nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
 return layers
size=300
vgg=vgg(base[str(size)], 3)
print(vgg)

输出为:

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6))
ReLU(inplace)
Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
ReLU(inplace)

SSD中添加的网络

add_extras函数构建基本的卷积层

def add_extras(cfg, i, batch_norm=False):
 # Extra layers added to VGG for feature scaling
 layers = []
 in_channels = i
 flag = False
 for k, v in enumerate(cfg):
  if in_channels != 'S':
   if v == 'S':
    layers += [nn.Conv2d(in_channels, cfg[k + 1],
       kernel_size=(1, 3)[flag], stride=2, padding=1)]
   else:
    layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
   flag = not flag
  in_channels = v
 return layers
extra_layers=add_extras(extras[str(size)], 1024)
for layer in extra_layers:
 print(layer)

输出为:

Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))

multibox函数得到每个特征图的默认box的位置计算网络和分类得分网络

def multibox(vgg, extra_layers, cfg, num_classes):
 loc_layers = []
 conf_layers = []
 vgg_source = [21, -2]
 for k, v in enumerate(vgg_source):
  loc_layers += [nn.Conv2d(vgg[v].out_channels,
         cfg[k] * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(vgg[v].out_channels,
      cfg[k] * num_classes, kernel_size=3, padding=1)]
 for k, v in enumerate(extra_layers[1::2], 2):
  loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * num_classes, kernel_size=3, padding=1)]
 return vgg, extra_layers, (loc_layers, conf_layers)
base_, extras_, head_ = multibox(vgg(base[str(size)], 3), ## 产生vgg19基本模型
          add_extras(extras[str(size)], 1024), 
          mbox[str(size)], num_classes)
#mbox[str(size)]为:[4, 6, 6, 6, 4, 4]

得到的输出为:

base_为上述描述的vgg网络,extras_为extra_layers网络,head_为:

([Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))],
 [Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))])

SSD网络及forward函数为:

class SSD(nn.Module):
 """Single Shot Multibox Architecture
 The network is composed of a base VGG network followed by the
 added multibox conv layers. Each multibox layer branches into
  1) conv2d for class conf scores
  2) conv2d for localization predictions
  3) associated priorbox layer to produce default bounding
   boxes specific to the layer's feature map size.
 See: https://arxiv.org/pdf/1512.02325.pdf for more details.

 Args:
  phase: (string) Can be "test" or "train"
  size: input image size
  base: VGG16 layers for input, size of either 300 or 500
  extras: extra layers that feed to multibox loc and conf layers
  head: "multibox head" consists of loc and conf conv layers
 """

 def __init__(self, phase, size, base, extras, head, num_classes):
  super(SSD, self).__init__()
  self.phase = phase
  self.num_classes = num_classes 
  self.cfg = (coco, voc)[num_classes == 21]
  self.priorbox = PriorBox(self.cfg)
  self.priors = Variable(self.priorbox.forward(), volatile=True)
  self.size = size

  # SSD network
  self.vgg = nn.ModuleList(base)
  # Layer learns to scale the l2 normalized features from conv4_3
  self.L2Norm = L2Norm(512, 20)
  self.extras = nn.ModuleList(extras)

  self.loc = nn.ModuleList(head[0])
  self.conf = nn.ModuleList(head[1])

  if phase == 'test':
   self.softmax = nn.Softmax(dim=-1)
   self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)

 def forward(self, x):
  """Applies network layers and ops on input image(s) x.

  Args:
   x: input image or batch of images. Shape: [batch,3,300,300].

  Return:
   Depending on phase:
   test:
    Variable(tensor) of output class label predictions,
    confidence score, and corresponding location predictions for
    each object detected. Shape: [batch,topk,7]

   train:
    list of concat outputs from:
     1: confidence layers, Shape: [batch*num_priors,num_classes]
     2: localization layers, Shape: [batch,num_priors*4]
     3: priorbox layers, Shape: [2,num_priors*4]
  """
  sources = list()
  loc = list()
  conf = list()

  # apply vgg up to conv4_3 relu
  for k in range(23):
   x = self.vgg[k](x) ##得到的x尺度为[1,512,38,38]

  s = self.L2Norm(x)
  sources.append(s)

  # apply vgg up to fc7
  for k in range(23, len(self.vgg)):
   x = self.vgg[k](x) ##得到的x尺寸为[1,1024,19,19]
  sources.append(x)

  # apply extra layers and cache source layer outputs
  for k, v in enumerate(self.extras):
   x = F.relu(v(x), inplace=True)
   if k % 2 == 1:
    sources.append(x)
  '''
  上述得到的x输出分别为:
  torch.Size([1, 512, 10, 10])
  torch.Size([1, 256, 5, 5])
  torch.Size([1, 256, 3, 3])
  torch.Size([1, 256, 1, 1])
  '''

  # apply multibox head to source layers
  for (x, l, c) in zip(sources, self.loc, self.conf):
   loc.append(l(x).permute(0, 2, 3, 1).contiguous())
   conf.append(c(x).permute(0, 2, 3, 1).contiguous())

  loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
  conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
  if self.phase == "test":
   output = self.detect(
    loc.view(loc.size(0), -1, 4),     # loc preds
    self.softmax(conf.view(conf.size(0), -1,
        self.num_classes)),    # conf preds
    self.priors.type(type(x.data))     # default boxes
   )
  else:
   output = (
    loc.view(loc.size(0), -1, 4), #[1,8732,4]
    conf.view(conf.size(0), -1, self.num_classes),#[1,8732,21]
    self.priors
   )
  return output

上述代码中sources中保存的数据输出如下,即用于边框提取的特征图:

torch.Size([1, 512, 38, 38])
torch.Size([1, 1024, 19, 19])
torch.Size([1, 512, 10, 10])
torch.Size([1, 256, 5, 5])
torch.Size([1, 256, 3, 3])
torch.Size([1, 256, 1, 1])

模型输入为

x=Variable(torch.randn(1,3,300,300))

以上这篇基于Pytorch SSD模型分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。