本文参考github上SSD实现,对模型进行分析,主要分析模型组成及输入输出大小.SSD网络结构如下图:

基于Pytorch SSD模型分析

每输入的图像有8732个框输出;

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
#from layers import *
from data import voc, coco
import os
base = {
 '300': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'C', 512, 512, 512, 'M',
   512, 512, 512],
 '512': [],
}
extras = {
 '300': [256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256],
 '512': [],
}
mbox = {
 '300': [4, 6, 6, 6, 4, 4], # number of boxes per feature map location
 '512': [],
}

VGG基础网络结构:

def vgg(cfg, i, batch_norm=False):
 layers = []
 in_channels = i
 for v in cfg:
  if v == 'M':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
  elif v == 'C':
   layers += [nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)]
  else:
   conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
   if batch_norm:
    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
   else:
    layers += [conv2d, nn.ReLU(inplace=True)]
   in_channels = v
 pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
 conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)
 conv7 = nn.Conv2d(1024, 1024, kernel_size=1)
 layers += [pool5, conv6,
    nn.ReLU(inplace=True), conv7, nn.ReLU(inplace=True)]
 return layers
size=300
vgg=vgg(base[str(size)], 3)
print(vgg)

输出为:

Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=True)
Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
ReLU(inplace)
MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)
Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(6, 6), dilation=(6, 6))
ReLU(inplace)
Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1))
ReLU(inplace)

SSD中添加的网络

add_extras函数构建基本的卷积层

def add_extras(cfg, i, batch_norm=False):
 # Extra layers added to VGG for feature scaling
 layers = []
 in_channels = i
 flag = False
 for k, v in enumerate(cfg):
  if in_channels != 'S':
   if v == 'S':
    layers += [nn.Conv2d(in_channels, cfg[k + 1],
       kernel_size=(1, 3)[flag], stride=2, padding=1)]
   else:
    layers += [nn.Conv2d(in_channels, v, kernel_size=(1, 3)[flag])]
   flag = not flag
  in_channels = v
 return layers
extra_layers=add_extras(extras[str(size)], 1024)
for layer in extra_layers:
 print(layer)

输出为:

Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))
Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))
Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))
Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1))

multibox函数得到每个特征图的默认box的位置计算网络和分类得分网络

def multibox(vgg, extra_layers, cfg, num_classes):
 loc_layers = []
 conf_layers = []
 vgg_source = [21, -2]
 for k, v in enumerate(vgg_source):
  loc_layers += [nn.Conv2d(vgg[v].out_channels,
         cfg[k] * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(vgg[v].out_channels,
      cfg[k] * num_classes, kernel_size=3, padding=1)]
 for k, v in enumerate(extra_layers[1::2], 2):
  loc_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * 4, kernel_size=3, padding=1)]
  conf_layers += [nn.Conv2d(v.out_channels, cfg[k]
         * num_classes, kernel_size=3, padding=1)]
 return vgg, extra_layers, (loc_layers, conf_layers)
base_, extras_, head_ = multibox(vgg(base[str(size)], 3), ## 产生vgg19基本模型
          add_extras(extras[str(size)], 1024), 
          mbox[str(size)], num_classes)
#mbox[str(size)]为:[4, 6, 6, 6, 4, 4]

得到的输出为:

base_为上述描述的vgg网络,extras_为extra_layers网络,head_为:

([Conv2d(512, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))],
 [Conv2d(512, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(1024, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(512, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 126, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 Conv2d(256, 84, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))])

SSD网络及forward函数为:

class SSD(nn.Module):
 """Single Shot Multibox Architecture
 The network is composed of a base VGG network followed by the
 added multibox conv layers. Each multibox layer branches into
  1) conv2d for class conf scores
  2) conv2d for localization predictions
  3) associated priorbox layer to produce default bounding
   boxes specific to the layer's feature map size.
 See: https://arxiv.org/pdf/1512.02325.pdf for more details.

 Args:
  phase: (string) Can be "test" or "train"
  size: input image size
  base: VGG16 layers for input, size of either 300 or 500
  extras: extra layers that feed to multibox loc and conf layers
  head: "multibox head" consists of loc and conf conv layers
 """

 def __init__(self, phase, size, base, extras, head, num_classes):
  super(SSD, self).__init__()
  self.phase = phase
  self.num_classes = num_classes 
  self.cfg = (coco, voc)[num_classes == 21]
  self.priorbox = PriorBox(self.cfg)
  self.priors = Variable(self.priorbox.forward(), volatile=True)
  self.size = size

  # SSD network
  self.vgg = nn.ModuleList(base)
  # Layer learns to scale the l2 normalized features from conv4_3
  self.L2Norm = L2Norm(512, 20)
  self.extras = nn.ModuleList(extras)

  self.loc = nn.ModuleList(head[0])
  self.conf = nn.ModuleList(head[1])

  if phase == 'test':
   self.softmax = nn.Softmax(dim=-1)
   self.detect = Detect(num_classes, 0, 200, 0.01, 0.45)

 def forward(self, x):
  """Applies network layers and ops on input image(s) x.

  Args:
   x: input image or batch of images. Shape: [batch,3,300,300].

  Return:
   Depending on phase:
   test:
    Variable(tensor) of output class label predictions,
    confidence score, and corresponding location predictions for
    each object detected. Shape: [batch,topk,7]

   train:
    list of concat outputs from:
     1: confidence layers, Shape: [batch*num_priors,num_classes]
     2: localization layers, Shape: [batch,num_priors*4]
     3: priorbox layers, Shape: [2,num_priors*4]
  """
  sources = list()
  loc = list()
  conf = list()

  # apply vgg up to conv4_3 relu
  for k in range(23):
   x = self.vgg[k](x) ##得到的x尺度为[1,512,38,38]

  s = self.L2Norm(x)
  sources.append(s)

  # apply vgg up to fc7
  for k in range(23, len(self.vgg)):
   x = self.vgg[k](x) ##得到的x尺寸为[1,1024,19,19]
  sources.append(x)

  # apply extra layers and cache source layer outputs
  for k, v in enumerate(self.extras):
   x = F.relu(v(x), inplace=True)
   if k % 2 == 1:
    sources.append(x)
  '''
  上述得到的x输出分别为:
  torch.Size([1, 512, 10, 10])
  torch.Size([1, 256, 5, 5])
  torch.Size([1, 256, 3, 3])
  torch.Size([1, 256, 1, 1])
  '''

  # apply multibox head to source layers
  for (x, l, c) in zip(sources, self.loc, self.conf):
   loc.append(l(x).permute(0, 2, 3, 1).contiguous())
   conf.append(c(x).permute(0, 2, 3, 1).contiguous())

  loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
  conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
  if self.phase == "test":
   output = self.detect(
    loc.view(loc.size(0), -1, 4),     # loc preds
    self.softmax(conf.view(conf.size(0), -1,
        self.num_classes)),    # conf preds
    self.priors.type(type(x.data))     # default boxes
   )
  else:
   output = (
    loc.view(loc.size(0), -1, 4), #[1,8732,4]
    conf.view(conf.size(0), -1, self.num_classes),#[1,8732,21]
    self.priors
   )
  return output

上述代码中sources中保存的数据输出如下,即用于边框提取的特征图:

torch.Size([1, 512, 38, 38])
torch.Size([1, 1024, 19, 19])
torch.Size([1, 512, 10, 10])
torch.Size([1, 256, 5, 5])
torch.Size([1, 256, 3, 3])
torch.Size([1, 256, 1, 1])

模型输入为

x=Variable(torch.randn(1,3,300,300))

以上这篇基于Pytorch SSD模型分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。