本文实例为大家分享了opencv+python实现均值滤波的具体代码,供大家参考,具体内容如下

原理

均值滤波其实就是对目标像素及周边像素取平均值后再填回目标像素来实现滤波目的的方法,当滤波核的大小是3×3 3\times 33×3时,则取其自身和周围8个像素值的均值来代替当前像素值。
均值滤波也可以看成滤波核的值均为 1 的滤波。
优点:算法简单,计算速度快;
缺点:降低噪声的同时使图像产生模糊,特别是景物的边缘和细节部分。

代码

import cv2 as cv
import numpy as np
import math
import copy

def spilt( a ):
 if a/2 == 0:
  x1 = x2 = a/2
 else:
  x1 = math.floor( a/2 )
  x2 = a - x1
 return -x1,x2

def original (i, j, k,a, b,img):
 x1, x2 = spilt(a)
 y1, y2 = spilt(b)
 temp = np.zeros(a * b)
 count = 0
 for m in range(x1, x2):
  for n in range(y1, y2):
   if i + m < 0 or i + m > img.shape[0] - 1 or j + n < 0 or j + n > img.shape[1] - 1:
    temp[count] = img[i, j, k]
   else:
    temp[count] = img[i + m, j + n, k]
   count += 1
 return temp

def average_function(a , b ,img):
 img0 = copy.copy(img)
 for i in range (0 , img.shape[0] ):
  for j in range (2 ,img.shape[1] ):
   for k in range (img.shape[2]):
    temp = original(i, j, k, a, b, img0)
    img[i,j,k] = int ( np.mean(temp))
 return img 
 
def main():
 img0 = cv.imread(r"noise.jpg")

 ave_img = average_function( 3 , 3, copy.copy(img0) ) #(3,3)滤波器大小 

 cv.imshow("ave_img",ave_img) 
 cv.imshow("original",img0)

 cv.waitKey(0)
 cv.destroyAllWindows()

if __name__ == "__main__":
 main()

样例

原图:

opencv+python实现均值滤波

滤波核为3×3 3\times 33×3的均值滤波后:

opencv+python实现均值滤波

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com