何为数据抽样:
抽样是数据处理的一种基本方法,常常伴随着计算资源不足、获取全部数据困难、时效性要求等情况使用。
抽样方法:
一般有四种方法:
随机抽样 直接从整体数据中等概率抽取n个样本。这种方法优势是,简单、好操作、适用于分布均匀的场景;缺点是总体大时无法一一编号
系统抽样 又称机械、等距抽样,将总体中个体按顺序进行编号,然后计算出间隔,再按照抽样间隔抽取个体。优势,易于理解、简便易行。缺点是,如有明显分布规律时容易产生偏差。
群体抽样 总体分群,在随机抽取几个小群代表总体。优点是简单易行、便与组织;缺点是群体划分容易造成误差
分层抽样 先按照观察指标影响较大的某一种特征,将总体分若干个类别,再从每一层随机抽取一定数量的单位合并成总体。优点样本代表性好,少误差
以上四种基本抽样方法都属单阶段抽样,实际应用中常根据实际情况将整个抽样过程分为若干阶段来进行,称为多阶段抽样。
各种抽样方法的抽样误差一般是:整群抽样≥单纯随机抽样≥系统抽样≥分层抽样
python代码实现
import random import numpy as np import pandas as pd # 导入数据 df = pd.read_csv('https://raw.githubusercontent.com/ffzs/dataset/master/glass.csv') df.index.size # 214 ##########随机抽样########## # # 使用pandas # DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None) # n是要抽取的行数。(例如n=20000时,抽取其中的2W行) # frac是抽取的比列。(有一些时候,我们并对具体抽取的行数不关系,我们想抽取其中的百分比,这个时候就可以选择使用frac,例如frac=0.8,就是抽取其中80%) # replace:是否为有放回抽样,取replace=True时为有放回抽样。 # weights这个是每个样本的权重,具体可以看官方文档说明。 # random_state这个在之前的文章已经介绍过了。 # axis是选择抽取数据的行还是列。axis=0的时是抽取行,axis=1时是抽取列(也就是说axis=1时,在列中随机抽取n列,在axis=0时,在行中随机抽取n行) df_0 = df.sample(n=20, replace=True) df_0.index.size # 20 # 数据准备 data = df.values # 使用random data_sample = random.sample(list(data), 20) len(data_sample) # 20 ##########等距抽样########## # 指定抽样数量 sample_count = 50 # 获取最大样本量 record_count = data.shape[0] # 抽样间距 width = record_count//sample_count data_sample = [] i = 0 # 本量小于等于指定抽样数量并且矩阵索引在有效范围内是 while len(data_sample) <= sample_count and i * width <= record_count -1: data_sample.append(data[i*width]) i += 1 len(data_sample) # 51 ##########分层抽样########## # 数据只是随便找的分层仅限于演示 # 定义每个分层的抽样数量 each_sample_count = 6 # 定义分层值域 label_data_unique = np.unique(data[:, -1]) # 定义一些数据 sample_list, sample_data, sample_dict = [], [], {} # 遍历每个分层标签 for label_data in label_data_unique: for data_tmp in data: # 读取每条数据 if data_tmp[-1] == label_data: sample_list.append(data_tmp) # 对每层数据都数据抽样 each_sample_data = random.sample(sample_list, each_sample_count) sample_data.extend(each_sample_data) sample_dict[label_data] = len(each_sample_data) sample_dict # {1.0: 6, 2.0: 6, 3.0: 6, 5.0: 6, 6.0: 6, 7.0: 6} ##########整群抽样########## # 数据分群仅限于演示,不符合实际情况 # 定义整群的标签 label_data_unique = np.unique(data[:, -1]) # 随机抽取2个群 sample_label = random.sample(list(label_data_unique), 2) # 定义空列表 sample_data = [] # 遍历每个整群标签值域 for each_label in sample_label: for data_tmp in data: if data_tmp[-1] == each_label: sample_data.append(data_tmp) len(sample_data) # 83
需要注意的问题
数据抽样过程中要注意一些问题
数据时效性 不能用过时的数据来分析现在的运营状态
关键因素数据 整体数据的关键性数据必须要在模型中,如双十一带来的销售增长
业务随机性 抽样数据要使各个场景的数据分布均衡
数据来源多样性 数据覆盖要全面
抽样数据量问题
时间分布 能包含业务周期。月销售预测,至少包含12个月数据;时间还要考虑季节、节假日、特定促销日等周期性。
做预测分析 考虑特征数据和特征值域的分布,通常数据记录要同时是特征数量和特征值域的100倍以上。例如数据集有5个特征值,每个特征有2个值域,那么数据记录数需要至少1000(10052)条以上
做关联规则分析 根据关联前后项数量(每个前项或后项可包含多个要关联的主体,例如品牌+商品+价格关联),每个主体需要至少1000条数据。例如只做单品销售关联,那么单品的销售记录需要在1000条以上;如果要同时做单品+品牌的关联,那么需要至少2000条数据。
异常检测 无论是监督室还是非监督式建模,对于异常数据本来就是小概率分布的,因此异常数据记录一般越多越好。
以上这篇python数据预处理 :数据抽样解析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】
- 谭咏麟.2022-倾·听【环球】【WAV+CUE】
- 4complete《丛生》[320K/MP3][85.26MB]
- 4complete《丛生》[FLAC/分轨][218.01MB]