数据预处理在解决深度学习问题的过程中,往往需要花费大量的时间和精力。 数据处理的质量对训练神经网络来说十分重要,良好的数据处理不仅会加速模型训练, 更会提高模型性能。为解决这一问题,PyTorch提供了几个高效便捷的工具, 以便使用者进行数据处理或增强等操作,同时可通过并行化加速数据加载。
数据集存放大致有以下两种方式:
(1)所有数据集放在一个目录下,文件名上附有标签名,数据集存放格式如下: root/cat_dog/cat.01.jpg
root/cat_dog/cat.02.jpg
........................
root/cat_dog/dog.01.jpg
root/cat_dog/dog.02.jpg
......................
(2)不同类别的数据集放在不同目录下,目录名就是标签,数据集存放格式如下:
root/ants/xxx.png
root/ants/xxy.jpeg
root/ants/xxz.png
................
root/bees/123.jpg
root/bees/nsdf3.png
root/bees/asd932_.png
..................
1.1 对第1种数据集的处理步骤
(1)生成包含各文件名的列表(List)
(2)定义Dataset的一个子类,该子类需要继承Dataset类,查看Dataset类的源码
(3)重写父类Dataset中的两个魔法方法: 一个是: __lent__(self),其功能是len(Dataset),返回Dataset的样本数。 另一个是__getitem__(self,index),其功能假设索引为i,使Dataset[i]返回第i个样本。
(4)使用torch.utils.data.DataLoader加载数据集Dataset.
1.2 实例详解
以下以cat-dog数据集为例,说明如何实现自定义数据集的加载。
1.2.1 数据集结构
所有数据集在cat-dog目录下:
.\cat_dog\cat.01.jpg
.\cat_dog\cat.02.jpg
.\cat_dog\cat.03.jpg
....................
.\cat_dog\dog.01.jpg
.\cat_dog\dog.02.jpg
....................
1.2.2 导入需要用到的模块
from torch.utils.data import DataLoader,Dataset from skimage import io,transform import matplotlib.pyplot as plt import oimport torch from torchvision import transforms, utils from PIL import Image import pandas as pd import numpy as np #过滤警告信息 import warnings warnings.filterwarnings("ignore")
1.2.3定义加载自定义数据的类
class MyDataset(Dataset): #继承Dataset def __init__(self, path_dir, transform=None): #初始化一些属性 self.path_dir = path_dir #文件路径,如'.\data\cat-dog' self.transform = transform #对图形进行处理,如标准化、截取、转换等 self.images = os.listdir(self.path_dir)#把路径下的所有文件放在一个列表中 def __len__(self):#返回整个数据集的大小 return len(self.images) def __getitem__(self,index):#根据索引index返回图像及标签 image_index = self.images[index]#根据索引获取图像文件名称 img_path = os.path.join(self.path_dir, image_index)#获取图像的路径或目录 img = Image.open(img_path).convert('RGB')# 读取图像 # 根据目录名称获取图像标签(cat或dog) label = img_path.split('\\')[-1].split('.')[0] #把字符转换为数字cat-0,dog-1 label = 1 if 'dog' in label else 0 if self.transform is not None: img = self.transform(img) return img,label
1.2.4 实例化类
dataset = MyDataset('.\data\cat-dog',transform=None) img, label = dataset[0] #将启动魔法方法__getitem__(0) print(type(img)) <class 'PIL.Image.Image'>
1.2.5 查看图像形状
i=1
for img, label in dataset:
if i
img的形状(500, 374),label的值0
img的形状(300, 280),label的值0
img的形状(489, 499),label的值0
img的形状(431, 410),label的值0
img的形状(300, 224),label的值0
从上面返回样本的形状来看:
(1)每张图片的大小不一样,如果需要取batch训练的神经网络来说很不友好。
(2)返回样本的数值较大,未归一化至[-1, 1]
为此需要对img进行转换,如何转换?只要使用torchvision中的transforms即可
1.2.6 对图像数据进行处理
这里使用torchvision中的transforms模块
from torchvision import transforms as T transform = T.Compose([ T.Resize(224), # 缩放图片(Image),保持长宽比不变,最短边为224像素 T.CenterCrop(224), # 从图片中间切出224*224的图片 T.ToTensor(), # 将图片(Image)转成Tensor,归一化至[0, 1] T.Normalize(mean=[.5, .5, .5], std=[.5, .5, .5]) # 标准化至[-1, 1],规定均值和标准差 ])
1.2.7查看处理后的数据
dataset = MyDataset('.\data\cat-dog',transform=transform) for img, label in dataset: print("图像img的形状{},标签label的值{}".format(img.shape, label)) print("图像数据预处理后:\n",img) break
图像img的形状torch.Size([3, 224, 224]),标签label的值0
图像数据预处理后:
tensor([[[ 0.9059, 0.9137, 0.9137, ..., 0.9451, 0.9451, 0.9451],
[ 0.9059, 0.9137, 0.9137, ..., 0.9451, 0.9451, 0.9451],
[ 0.9059, 0.9137, 0.9137, ..., 0.9529, 0.9529, 0.9529],
...,
[-0.4824, -0.5294, -0.5373, ..., -0.9216, -0.9294, -0.9451],
[-0.4980, -0.5529, -0.5608, ..., -0.9294, -0.9373, -0.9529],
[-0.4980, -0.5529, -0.5686, ..., -0.9529, -0.9608, -0.9608]],
[[ 0.5686, 0.5765, 0.5765, ..., 0.7961, 0.7882, 0.7882],
[ 0.5686, 0.5765, 0.5765, ..., 0.7961, 0.7882, 0.7882],
[ 0.5686, 0.5765, 0.5765, ..., 0.8039, 0.7961, 0.7961],
...,
[-0.6078, -0.6471, -0.6549, ..., -0.9137, -0.9216, -0.9373],
[-0.6157, -0.6706, -0.6784, ..., -0.9216, -0.9294, -0.9451],
[-0.6157, -0.6706, -0.6863, ..., -0.9451, -0.9529, -0.9529]],
[[-0.0510, -0.0431, -0.0431, ..., 0.2078, 0.2157, 0.2157],
[-0.0510, -0.0431, -0.0431, ..., 0.2078, 0.2157, 0.2157],
[-0.0510, -0.0431, -0.0431, ..., 0.2157, 0.2235, 0.2235],
...,
[-0.9529, -0.9843, -0.9922, ..., -0.9529, -0.9608, -0.9765],
[-0.9686, -0.9922, -1.0000, ..., -0.9608, -0.9686, -0.9843],
[-0.9686, -0.9922, -1.0000, ..., -0.9843, -0.9922, -0.9922]]])
由此可知,数据已标准化、规范化。
1.2.8对数据集进行批量加载
使用DataLoader模块,对数据集dataset进行批量加载
#使用DataLoader加载数据 dataloader = DataLoader(dataset,batch_size=4,shuffle=True) for batch_datas, batch_labels in dataloader: print(batch_datas.size(),batch_labels.size()) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([4, 3, 224, 224]) torch.Size([4]) torch.Size([2, 3, 224, 224]) torch.Size([2])
1.2.9随机查看一个批次的图像
import torchvision import matplotlib.pyplot as plt import numpy as np %matplotlib inline # 显示图像 def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) plt.show() # 随机获取部分训练数据 dataiter = iter(dataloader) images, labels = dataiter.next() # 显示图像 imshow(torchvision.utils.make_grid(images)) # 打印标签 print(' '.join('%s' % ["小狗" if labels[j].item()==1 else "小猫" for j in range(4)]))
2 对第2种数据集的处理
处理这种情况比较简单,可分为2步:
(1)使用datasets.ImageFolder读取、处理图像。
(2)使用.data.DataLoader批量加载数据集,示例如下:
import torch from torchvision import transforms, datasets data_transform = transforms.Compose([ transforms.RandomSizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) hymenoptera_dataset = datasets.ImageFolder(root='.\catdog\train', transform=data_transform) dataset_loader = torch.utils.data.DataLoader(hymenoptera_dataset,
总结
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
- 魔兽世界wlk敏锐贼一键输出宏是什么 wlk敏锐贼一键输出宏介绍
- 李逸朗2007-李威乐[英皇娱乐][WAV+CUE]
- DavidVersace-EyetoEye(2024)[24-44,1]
- SimoneLamsma,RobertKulek-Mendelssohn,Janacek,Schumann-SonatasforViolinandPiano【SAC
- 《街头篮球》大动作:新增五大服务器节点 优化玩家体验
- 任天堂宣布推出音乐APP!仅面向NSO订阅用户
- 《马路RPG:兄弟齐航》新预告!兄弟携手海岛冒险
- 王子鸣.2009-永远【九洲】【WAV分轨】
- 杭天琪.2002-水与火的缠绵【泰达】【WAV+CUE】
- 邱锋泽.2024-COlOR.Free【发现梦想】【FLAC分轨】
- 群星 《10年朋友Vol.8》滚石台湾版[WAV+CUE][1.G]
- 群星《2024好听新歌31》十倍音质 U盘音乐 [WAV分轨][1.1G]
- 群星《全天后》华纳[WAV+CUE][1.1G]
- 许乐《声愿HQCD》[正版原抓WAV+CUE]
- 黄凯芹《给你留念》头版限量编号MQA-UHQCD2024[低速原抓WAV+CUE]