一、效果图:
在左图的白色区域周围,画任意形状的凸包图。
二、代码
import cv2 import numpy as np def generate_poly(image, n, area_thresh): """ 随机生成凸包 :param image: 二值图 :param n: 顶点个数 :param area_thresh: 删除小于此面积阈值的凸包 :return: 凸包图 """ row, col = np.where(image[:, :, 0] == 255) # 行,列 point_set = np.zeros((n, 1, 2), dtype=int) for j in range(n): index = np.random.randint(0, len(row)) point_set[j, 0, 0] = col[index] point_set[j, 0, 1] = row[index] hull = [] hull.append(cv2.convexHull(point_set, False)) drawing_board = np.zeros(image.shape, dtype=np.uint8) cv2.drawContours(drawing_board, hull, -1, (255, 255, 255), -1) cv2.namedWindow('drawing_board', 0), cv2.imshow('drawing_board', drawing_board), cv2.waitKey() # 如果生成面积过小,重新生成 if cv2.contourArea(hull[0]) < area_thresh: drawing_board = generate_poly(image, n, area_thresh) # 如果生成洞,重新生成 is_hole = image[drawing_board == 255] == 255 if is_hole.all() == True: # 洞,则drawing_board所有为255的地方,image也是255,all()即为所有位置 drawing_board = generate_poly(image, n, area_thresh) return drawing_board img = np.zeros((256, 256, 3), np.uint8) cv2.circle(img, (100, 100), 50, (255, 255, 255), -1) cv2.namedWindow('img', 0), cv2.imshow('img', img), cv2.waitKey() img_hull = generate_poly(img, 8, 100) cv2.namedWindow('img_hull', 0), cv2.imshow('img_hull', img_hull), cv2.waitKey()
补充知识:opencv python 轮廓特征/凸包/外接矩形/外接圆/拟合矩形/拟合直线/拟合圆
Contour Features
1 图像的矩
cv2.moments()
图像的矩可以帮助计算物体的某些特征,如对象的质心,对象的区域等.
代码:
import cv2 import numpy as np img = cv2.imread('img7.png',0) ret,thresh = cv2.threshold(img,127,255,0) im2,contours,hierarchy = cv2.findContours(thresh, 1, 2) cnt = contours[0] M = cv2.moments(cnt) print( M )
输出:
{'m00': 283.0, 'm10': 8260.666666666666, 'm01': 34747.666666666664, 'm20': 251349.8333333333, 'm11': 1008063.0, 'm02': 4274513.166666666, 'm30': 7941981.4, 'm21': 30484543.9, 'm12': 123258620.46666667, 'm03': 526819846.70000005, 'mu20': 10223.989595602674, 'mu11': -6208.702394974302, 'mu02': 8080.874165684916, 'mu30': 8302.495426246896, 'mu21': -14552.154961312423, 'mu12': 11791.528133469663, 'mu03': -3268.923251092434, 'nu20': 0.12765785058625623, 'nu11': -0.07752253611575, 'nu02': 0.10089867729257346, 'nu30': 0.006162296011483629, 'nu21': -0.010800931752771139, 'nu12': 0.008751933371317017, 'nu03': -0.0024262672459139235}
此刻,可以提取有用的数据,如面积,质心等.
质心由关系给出:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
2轮廓面积
cv2.contourArea(contour[, oriented])
3轮廓周长
cv2.arcLength(curve, closed)
第二个参数指定形状是否为闭合轮廓
4轮廓近似
它根据我们指定的精度将轮廓形状近似为具有较少顶点数的另一个形状.它是Douglas-Peucker算法的一种实现方式.
cv2.approxPolyDP(curve, epsilon, closed[, approxCurve])
第二个参数epsilon,它是从轮廓到近似轮廓的最大距离.第三个参数指定曲线是否闭合.
下面,在第二幅图像中,绿线表示epsilon =弧长的10%的近似曲线. 第三幅图像显示相同的epsilon =弧长的1%.
代码:
import cv2 import numpy as np img = cv2.imread('img8.png') cv2.imshow('src',img) imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = contours[1] epsilon = 0.1*cv2.arcLength(cnt,True) approx = cv2.approxPolyDP(cnt,epsilon,True) cv2.polylines(img, [approx], True, (0, 0, 255), 2) cv2.imshow('show',img) cv2.waitKey()
5凸包
凸包看起来类似轮廓近似,但是它不是(两者在某些情况下可能提供相同的结果).
convexHull(points[, hull[, clockwise[, returnPoints]]]):检查曲线的凸性缺陷并进行修正.
points:传入的轮廓
hull:输出
clockwise:方向标志,如果为True,则顺时针方向输出凸包.
returnPoints:默认情况下为True,然后它返回hull points的坐标; 如果为False,则返回与hull points对应的轮廓点的索引
下面的手形图像. 红线表示手的凸包, 双面箭头标记显示凸起缺陷.
代码:
import cv2 import numpy as np img = cv2.imread('img8.png') imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = contours[1] hull = cv2.convexHull(cnt)
returnPoints = True,得到以下值:
array([[[192, 135]], [[ 9, 135]], [[ 9, 12]], [[192, 12]]], dtype=int32)
如果想找到凸性缺陷,需要传递returnPoints = False,得到以下结果:
array([[129], [ 67], [ 0], [142]], dtype=int32)
这些是轮廓中相应点的索引,检查第一个值:
cnt[129]
Out[3]: array([[192, 135]], dtype=int32)
与第一个结果相同.
6 检查凸性
cv2.isContourConvex(contour):检查曲线是否凸起
7 外接矩形
7.1 直边外接矩形
它是一个直的矩形,它不考虑对象的旋转。因此,边界矩形的面积不会最小.
cv.boundingRect()
设(x,y)为矩形的左上角坐标,(w,h)为宽度和高度
代码:
import cv2 import numpy as np img = cv2.imread('img7.png') imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(imgray, 127, 255, 0) im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnt = contours[0] x,y,w,h = cv2.boundingRect(cnt) cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) cv2.imshow('show',img) cv2.waitKey()
7.2 最小外接矩形
cv.minAreaRect返回一个Box2D结构,其中包含以下detals - (center(x,y),(width,height),rotation of rotation)
cv.boxPoints画上述矩形.
代码:
rect = cv2.minAreaRect(cnt) box = cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(img,[box],0,(0,0,255),2)
8 最小封闭圈
(x,y),radius = cv2.minEnclosingCircle(cnt) center = (int(x),int(y)) radius = int(radius) cv2.circle(img,center,radius,(0,255,0),2)
9 拟合椭圆
ellipse = cv2.fitEllipse(cnt)
cv2.ellipse(img,ellipse,(0,255,0),2)
10 拟合直线
rows,cols = img.shape[:2] [vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01) lefty = int((-x*vy/vx) + y) righty = int(((cols-x)*vy/vx)+y) cv2.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
以上这篇python 生成任意形状的凸包图代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 中国武警男声合唱团《辉煌之声1天路》[DTS-WAV分轨]
- 紫薇《旧曲新韵》[320K/MP3][175.29MB]
- 紫薇《旧曲新韵》[FLAC/分轨][550.18MB]
- 周深《反深代词》[先听版][320K/MP3][72.71MB]
- 李佳薇.2024-会发光的【黑籁音乐】【FLAC分轨】
- 后弦.2012-很有爱【天浩盛世】【WAV+CUE】
- 林俊吉.2012-将你惜命命【美华】【WAV+CUE】
- 晓雅《分享》DTS-WAV
- 黑鸭子2008-飞歌[首版][WAV+CUE]
- 黄乙玲1989-水泼落地难收回[日本天龙版][WAV+CUE]
- 周深《反深代词》[先听版][FLAC/分轨][310.97MB]
- 姜育恒1984《什么时候·串起又散落》台湾复刻版[WAV+CUE][1G]
- 那英《如今》引进版[WAV+CUE][1G]
- 蔡幸娟.1991-真的让我爱你吗【飞碟】【WAV+CUE】
- 群星.2024-好团圆电视剧原声带【TME】【FLAC分轨】