我就废话不多说了,大家还是直接看代码吧!
# -*- encoding=utf-8 -*- import pandas as pd data=['abc','abc','abc','asc','ase','ase','ase'] num=[1,2,2,1,2,1,2] df1=pd.DataFrame({'name':data,'num':num}) print(df1) df1['mmm']=df1['num'] df2=df1.groupby(['name', 'num'], as_index=False).count() print(df2) df2.sort_values(['name', 'num'], ascending=[1, 1], inplace=True) print(df2) df2['sum']=df2.groupby(['name'])['mmm'].cumsum() print(df2) kk=df2.groupby(['name'],as_index=False)['num'].sum() print(kk) df3 = pd.merge(df2, kk, on='name', how='left',) print(df3) df3['ratio']=df3['sum']/df3['num_y'] df3.columns = ['name', 'num', 'mmm', 'sum','numsum','ratio'] print(df3) df4=df3.groupby(['mmm'],as_index=False)['ratio'].mean() print(df4)
运行:
name num 0 abc 1 1 abc 2 2 abc 2 3 asc 1 4 ase 2 5 ase 1 6 ase 2 name num mmm 0 abc 1 1 1 abc 2 2 2 asc 1 1 3 ase 1 1 4 ase 2 2 name num mmm 0 abc 1 1 1 abc 2 2 2 asc 1 1 3 ase 1 1 4 ase 2 2 name num mmm sum 0 abc 1 1 1 1 abc 2 2 3 2 asc 1 1 1 3 ase 1 1 1 4 ase 2 2 3 name num 0 abc 3 1 asc 1 2 ase 3 name num_x mmm sum num_y 0 abc 1 1 1 3 1 abc 2 2 3 3 2 asc 1 1 1 1 3 ase 1 1 1 3 4 ase 2 2 3 3 name num mmm sum numsum ratio 0 abc 1 1 1 3 0.333333 1 abc 2 2 3 3 1.000000 2 asc 1 1 1 1 1.000000 3 ase 1 1 1 3 0.333333 4 ase 2 2 3 3 1.000000 mmm ratio 0 1 0.555556 1 2 1.000000 Process finished with exit code 0
补充知识:python项目篇-对符合条件的某个字段进行求和,聚合函数annotate(),aggregate()函数
对符合条件的某个字段求和
需求是,计算每日的收入和
1、
new_dayincome = request.POST.get("dayincome_time", None) # total_income = models.bathAccount.objects.filter(dayBath=new_dayincome).aggregate(nums=Sum('priceBath')) total_income = models.bathAccount.objects.values('priceBath').annotate(nums=Sum('priceBath')).filter(dayBath=new_dayincome) print("total_income",total_income[0]['nums'])
输出结果:total_income 132
2、
from django.db.models import Sum,Count new_dayincome = request.POST.get("dayincome_time", None) total_income = models.bathAccount.objects.filter(dayBath=new_dayincome).aggregate(nums=Sum('priceBath')) print("total_income",total_income['nums'])
输出结果:total_income 572
第二种输出的是正确的数字
以上这篇python 实现分组求和与分组累加求和代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
更新日志
2024年11月20日
2024年11月20日
- 柏菲·珞叔作品集《金色大厅2》限量开盘母带ORMCD[低速原抓WAV+CUE]
- Gareth.T《sad songs(Explicit)》[320K/MP3][29.03MB]
- Gareth.T《sad songs(Explicit)》[FLAC/分轨][152.85MB]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[320K/MP3][63.06MB]
- 龚玥《金装龚玥HQCD》头版限量[WAV分轨]
- 李小春《吻别》萨克斯演奏经典[原抓WAV+CUE]
- 齐秦《辉煌30年24K珍藏版》2CD[WAV+CUE]
- 证声音乐图书馆《海风摇曳·盛夏爵士曲》[FLAC/分轨][321.47MB]
- 群星 《世界经典汽车音乐》 [WAV分轨][1G]
- 冷漠.2011 《冷漠的爱DSD》[WAV+CUE][1.2G]
- 陈明《流金岁月精逊【中唱】【WAV+CUE】
- 群星《Jazz-Ladies1-2爵士女伶1-2》HQCD/2CD[原抓WAV+CUE]
- 群星《美女私房歌》(黑胶)[WAV分轨]
- 郑源.2009《试音天碟》24BIT-96KHZ[WAV+CUE][1.2G]
- 飞利浦试音碟 《环球群星监听录》SACD香港版[WAV+CUE][1.1G]