背景:加入现在有这样的数据,可能一条ocr代表两个label,并且label通过","分隔。我们想把数据转换成下面的。
原始数据:
label ocr 日常行车服务,汽车资讯 去加油站,加完油后直接离开?最开心的可能是加油站的工作人员 社会民生 已致2死20伤 !景区突遭尘卷风袭击,孩子被卷上天!现场画面曝光目标数据:
label ocr 日常行车服务 去加油站,加完油后直接离开?最开心的可能是加油站的工作人员 汽车资讯 去加油站,加完油后直接离开?最开心的可能是加油站的工作人员 社会民生 已致2死20伤 !景区突遭尘卷风袭击,孩子被卷上天!现场画面曝光实现办法:
1.通过hive代码:
select ocr,split(tag_info,',') label from ( select label,ocr from t1 lateral view explode(split(label,',')) TableName as tag_info ) t;
要注意的是一定要添加 t 语句另命名。
2.通过python代码:
df0 = pd.DataFrame({'A':[[1,2],[5,6]],'B':[10,-20]}) df0 = df df0.columns = ['A','B'] rows = [] for i, row in df0.iterrows(): for a in row.A.split(","): rows.append((a, row.B)) df222 = pd.DataFrame(rows, columns=df.columns) df222
补充知识:hive中的lateral view(侧视图) 与 explode函数的使用
今天偶然间发现了一个hive中列转行的小题目,需要用到lateral view 和 explode函数,刚好借这题说说lateral view 与 explode函数的使用。
题目是这样:
原数据表如下图
需求:将电影分类中的数组数据展开。
结果如下:
《疑犯追踪》 悬疑
《疑犯追踪》 动作
《疑犯追踪》 科幻
《疑犯追踪》 剧情
《Lie to me》 悬疑
《Lie to me》 警匪
先简单聊几句理论:explode与lateral view在关系型数据库中本身是不该出现的,因为他的出现本身就是在操作不满足第一范式的数据(每个属性都不可再分),本身已经违背了数据库的设计原理(不论是业务系统还是数据仓库系统),不过大数据技术普及后,很多类似pv,uv的数据,在业务系统中是存贮在非关系型数据库中,用json存储的概率比较大,直接导入hive为基础的数仓系统中,就需要经过ETL过程解析这类数据,explode与lateral view在这种场景下大显身手。
explode作用是处理map结构的字段,使用案例如下:
//建表语句 create table movie_info( movie string, category array<string> ) row format delimited fields terminated by '\t' collection items terminated by ','; //加载数据 load data local inpath '/opt/data/movie.txt' into table movie_info;
看下explode函数效果,以拆解category为例,可与原数据表结构对比。
select explode(category) from movie_info;
LATERAL VIEW的使用:
用法:
LATERAL VIEW udtf(expression) tableAlias AS columnAlias
解释:用于和split, explode等UDTF一起使用,它能够将一列数据拆成多行数据,在此基础上可以对拆分后的数据进行聚合。
select movie,category_name from movie_info lateral view explode(category) table_emp as category_name;
效果如下:
其中lateral view explode(category) table_emp相当于一个虚拟表,与原表movie_info笛卡尔积关联,也可以多重使用。那么问题就这样解决了。
以上这篇python 实现 hive中类似 lateral view explode的功能示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 黑鸭子2008-男人女人[首版][WAV+CUE]
- 张佳佳 《FOLK SONG Ⅱ Impromptus OP.23(即兴曲7首)》[320K/MP3][98.71MB]
- 祖海 《我家在中国 (维也纳金色大厅独唱音乐会)》[320K/MP3][118.55MB]
- 祖海 《我家在中国 (维也纳金色大厅独唱音乐会)》[FLAC/分轨][268.08MB]
- 张信哲.1996-思念【EMI百代】【WAV+CUE】
- 江美琪.2024-圆的?圆的>华纳】【FLAC分轨】
- 许巍.2018-无尽光芒【和雅弘嘉】【WAV+CUE】
- 庆怜 CAELAN《THE HALF-BLOOD PRINCE 半血王子》[320K/MP3][65.72MB]
- 庆怜 CAELAN《THE HALF-BLOOD PRINCE 半血王子》[FLAC/分轨][378.53MB]
- Fine乐团《废墟游乐》[320K/MP3][105.13MB]
- 万山红.2009-花开原野万山红Vol.1-2【柏菲】2CD【WAV+CUE】
- 曾庆瑜1992-18首中英文经典全集[台湾派森][WAV整轨]
- 【上扬爱乐】群星-TheSoundsofLS35AVol.4情迷4【低速原抓WAV分轨】
- Fine乐团《废墟游乐》[Hi-Res][24bit 48kHz][FLAC/分轨][767.04MB]
- Cicada《回返 (十五周年自选集)》[320K/MP3][93.87MB]