keras根据层名称来初始化网络

def get_model(input_shape1=[75, 75, 3], input_shape2=[1], weights=None):
 bn_model = 0
 trainable = True
 # kernel_regularizer = regularizers.l2(1e-4)
 kernel_regularizer = None
 activation = 'relu'

 img_input = Input(shape=input_shape1)
 angle_input = Input(shape=input_shape2)

 # Block 1
 x = Conv2D(64, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block1_conv1')(img_input)
 x = Conv2D(64, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block1_conv2')(x)
 x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

 # Block 2
 x = Conv2D(128, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block2_conv1')(x)
 x = Conv2D(128, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block2_conv2')(x)
 x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

 # Block 3
 x = Conv2D(256, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block3_conv1')(x)
 x = Conv2D(256, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block3_conv2')(x)
 x = Conv2D(256, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block3_conv3')(x)
 x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

 # Block 4
 x = Conv2D(512, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block4_conv1')(x)
 x = Conv2D(512, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block4_conv2')(x)
 x = Conv2D(512, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block4_conv3')(x)
 x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

 # Block 5
 x = Conv2D(512, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block5_conv1')(x)
 x = Conv2D(512, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block5_conv2')(x)
 x = Conv2D(512, (3, 3), activation=activation, padding='same',
    trainable=trainable, kernel_regularizer=kernel_regularizer,
    name='block5_conv3')(x)
 x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

 branch_1 = GlobalMaxPooling2D()(x)
 # branch_1 = BatchNormalization(momentum=bn_model)(branch_1)

 branch_2 = GlobalAveragePooling2D()(x)
 # branch_2 = BatchNormalization(momentum=bn_model)(branch_2)

 branch_3 = BatchNormalization(momentum=bn_model)(angle_input)

 x = (Concatenate()([branch_1, branch_2, branch_3]))
 x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
 # x = Dropout(0.5)(x)
 x = Dense(1024, activation=activation, kernel_regularizer=kernel_regularizer)(x)
 x = Dropout(0.6)(x)
 output = Dense(1, activation='sigmoid')(x)

 model = Model([img_input, angle_input], output)
 optimizer = Adam(lr=1e-5, beta_1=0.9, beta_2=0.999, epsilon=1e-8, decay=0.0)
 model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])

 if weights is not None:
  # 将by_name设置成True
  model.load_weights(weights, by_name=True)
  # layer_weights = h5py.File(weights, 'r')
  # for idx in range(len(model.layers)):
  #  model.set_weights()
 print 'have prepared the model.'

 return model

补充知识:keras.layers.Dense()方法

keras.layers.Dense()是定义网络层的基本方法,执行的操作是:output = activation(dot(input,kernel)+ bias。

其中activation是激活函数,kernel是权重矩阵,bias是偏向量。如果层输入大于2,在进行初始点积之前会将其展平。

代码如下:

class Dense(Layer):
 """Just your regular densely-connected NN layer.
 `Dense` implements the operation:
 `output = activation(dot(input, kernel) + bias)`
 where `activation` is the element-wise activation function
 passed as the `activation` argument, `kernel` is a weights matrix
 created by the layer, and `bias` is a bias vector created by the layer
 (only applicable if `use_bias` is `True`).
 Note: if the input to the layer has a rank greater than 2, then
 it is flattened prior to the initial dot product with `kernel`.
 # Example
 ```python
  # as first layer in a sequential model:
  model = Sequential()
  model.add(Dense(32, input_shape=(16,)))
  # now the model will take as input arrays of shape (*, 16)
  # and output arrays of shape (*, 32)
  # after the first layer, you don't need to specify
  # the size of the input anymore:
  model.add(Dense(32))
 ```
 # Arguments
  units: Positive integer, dimensionality of the output space.
  activation: Activation function to use
   (see [activations](../activations.md)).
   If you don't specify anything, no activation is applied
   (ie. "linear" activation: `a(x) = x`).
  use_bias: Boolean, whether the layer uses a bias vector.
  kernel_initializer: Initializer for the `kernel` weights matrix
   (see [initializers](../initializers.md)).
  bias_initializer: Initializer for the bias vector
   (see [initializers](../initializers.md)).
  kernel_regularizer: Regularizer function applied to
   the `kernel` weights matrix
   (see [regularizer](../regularizers.md)).
  bias_regularizer: Regularizer function applied to the bias vector
   (see [regularizer](../regularizers.md)).
  activity_regularizer: Regularizer function applied to
   the output of the layer (its "activation").
   (see [regularizer](../regularizers.md)).
  kernel_constraint: Constraint function applied to
   the `kernel` weights matrix
   (see [constraints](../constraints.md)).
  bias_constraint: Constraint function applied to the bias vector
   (see [constraints](../constraints.md)).
 # Input shape
  nD tensor with shape: `(batch_size, ..., input_dim)`.
  The most common situation would be
  a 2D input with shape `(batch_size, input_dim)`.
 # Output shape
  nD tensor with shape: `(batch_size, ..., units)`.
  For instance, for a 2D input with shape `(batch_size, input_dim)`,
  the output would have shape `(batch_size, units)`.
 """
 
 @interfaces.legacy_dense_support
 def __init__(self, units,
     activation=None,
     use_bias=True,
     kernel_initializer='glorot_uniform',
     bias_initializer='zeros',
     kernel_regularizer=None,
     bias_regularizer=None,
     activity_regularizer=None,
     kernel_constraint=None,
     bias_constraint=None,
     **kwargs):
  if 'input_shape' not in kwargs and 'input_dim' in kwargs:
   kwargs['input_shape'] = (kwargs.pop('input_dim'),)
  super(Dense, self).__init__(**kwargs)
  self.units = units
  self.activation = activations.get(activation)
  self.use_bias = use_bias
  self.kernel_initializer = initializers.get(kernel_initializer)
  self.bias_initializer = initializers.get(bias_initializer)
  self.kernel_regularizer = regularizers.get(kernel_regularizer)
  self.bias_regularizer = regularizers.get(bias_regularizer)
  self.activity_regularizer = regularizers.get(activity_regularizer)
  self.kernel_constraint = constraints.get(kernel_constraint)
  self.bias_constraint = constraints.get(bias_constraint)
  self.input_spec = InputSpec(min_ndim=2)
  self.supports_masking = True
 
 def build(self, input_shape):
  assert len(input_shape) >= 2
  input_dim = input_shape[-1]
 
  self.kernel = self.add_weight(shape=(input_dim, self.units),
          initializer=self.kernel_initializer,
          name='kernel',
          regularizer=self.kernel_regularizer,
          constraint=self.kernel_constraint)
  if self.use_bias:
   self.bias = self.add_weight(shape=(self.units,),
          initializer=self.bias_initializer,
          name='bias',
          regularizer=self.bias_regularizer,
          constraint=self.bias_constraint)
  else:
   self.bias = None
  self.input_spec = InputSpec(min_ndim=2, axes={-1: input_dim})
  self.built = True
 
 def call(self, inputs):
  output = K.dot(inputs, self.kernel)
  if self.use_bias:
   output = K.bias_add(output, self.bias)
  if self.activation is not None:
   output = self.activation(output)
  return output
 
 def compute_output_shape(self, input_shape):
  assert input_shape and len(input_shape) >= 2
  assert input_shape[-1]
  output_shape = list(input_shape)
  output_shape[-1] = self.units
  return tuple(output_shape)
 
 def get_config(self):
  config = {
   'units': self.units,
   'activation': activations.serialize(self.activation),
   'use_bias': self.use_bias,
   'kernel_initializer': initializers.serialize(self.kernel_initializer),
   'bias_initializer': initializers.serialize(self.bias_initializer),
   'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
   'bias_regularizer': regularizers.serialize(self.bias_regularizer),
   'activity_regularizer': regularizers.serialize(self.activity_regularizer),
   'kernel_constraint': constraints.serialize(self.kernel_constraint),
   'bias_constraint': constraints.serialize(self.bias_constraint)
  }
  base_config = super(Dense, self).get_config()
  return dict(list(base_config.items()) + list(config.items()))

参数说明如下:

units:正整数,输出空间的维数。

activation: 激活函数。如果未指定任何内容,则不会应用任何激活函数。即“线性”激活:a(x)= x)。

use_bias:Boolean,该层是否使用偏向量。

kernel_initializer:权重矩阵的初始化方法。

bias_initializer:偏向量的初始化方法。

kernel_regularizer:权重矩阵的正则化方法。

bias_regularizer:偏向量的正则化方法。

activity_regularizer:输出层正则化方法。

kernel_constraint:权重矩阵约束函数。

bias_constraint:偏向量约束函数。

以上这篇使用keras根据层名称来初始化网络就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。