前言:
keras默认提供了如何获取某一个层的某一个节点的输出,但是没有提供如何获取某一个层的输出的接口,所以有时候我们需要获取某一个层的输出,则需要自己编写代码,但是鉴于keras高层封装的特性,编写起来实际上很简单,本文提供两种常见的方法来实现,基于上一篇文章的模型和代码: keras自定义回调函数查看训练的loss和accuracy
一、模型加载以及各个层的信息查看
从前面的定义可知,参见上一篇文章,一共定义了8个网络层,定义如下:
model.add(Convolution2D(filters=6, kernel_size=(5, 5), padding='valid', input_shape=(img_rows, img_cols, 1), activation='tanh')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(filters=16, kernel_size=(5, 5), padding='valid', activation='tanh')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(120, activation='tanh')) model.add(Dense(84, activation='tanh')) model.add(Dense(n_classes, activation='softmax'))
这里每一个层都没有起名字,实际上最好给每一个层取一个名字,所以这里就使用索引来访问层,如下:
for index in range(8): layer=model.get_layer(index=index) # layer=model.layers[index] # 这样获取每一个层也是一样的 print(model) '''运行结果如下: <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> <keras.engine.sequential.Sequential object at 0x0000012A4F232E10> '''
当然由于 model.laters是一个列表,所以可以一次性打印出所有的层信息,即
print(model.layers) # 打印出所有的层
二、模型的加载
准备测试数据
# 训练参数 learning_rate = 0.001 epochs = 10 batch_size = 128 n_classes = 10 # 定义图像维度reshape img_rows, img_cols = 28, 28 # 加载keras中的mnist数据集 分为60,000个训练集,10,000个测试集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 将图片转化为(samples,width,height,channels)的格式 x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1) # 将X_train, X_test的数据格式转为float32 x_train = x_train.astype('float32') x_test = x_test.astype('float32') # 将X_train, X_test归一化0-1 x_train /= 255 x_test /= 255 # 输出0-9转换为ont-hot形式 y_train = np_utils.to_categorical(y_train, n_classes) y_test = np_utils.to_categorical(y_test, n_classes)
模型的加载
model=keras.models.load_model('./models/lenet5_weight.h5')
注意事项:
keras的每一个层有一个input和output属性,但是它是只针对单节点的层而言的哦,否则就不需要我们再自己编写输出函数了,
如果一个层具有单个节点 (i.e. 如果它不是共享层), 你可以得到它的输入张量、输出张量、输入尺寸和输出尺寸:
layer.input layer.output layer.input_shape layer.output_shape
如果层有多个节点 (参见: 层节点和共享层的概念), 您可以使用以下函数:
layer.get_input_at(node_index) layer.get_output_at(node_index) layer.get_input_shape_at(node_index) layer.get_output_shape_at(node_index)
三、获取某一个层的输出的方法定义
3.1 第一种实现方法
def get_output_function(model,output_layer_index): ''' model: 要保存的模型 output_layer_index:要获取的那一个层的索引 ''' vector_funcrion=K.function([model.layers[0].input],[model.layers[output_layer_index].output]) def inner(input_data): vector=vector_funcrion([input_data])[0] return vector return inner # 现在仅仅测试一张图片 #选择一张图片,选择第一张 x= np.expand_dims(x_test[1],axis=0) #[1,28,28,1] 的形状 get_feature=get_output_function(model,6) # 该函数的返回值依然是一个函数哦,获取第6层输出 feature=get_feature(x) # 相当于调用 定义在里面的inner函数 print(feature) '''运行结果为 [[-0.99986297 -0.9988328 -0.9273474 0.9101525 -0.9054705 -0.95798373 0.9911243 0.78576803 0.99676156 0.39356467 -0.9724135 -0.74534595 0.8527011 -0.9968267 -0.9420816 -0.32765102 -0.41667578 0.99942905 0.92333794 0.7565034 -0.38416263 -0.994241 0.3781617 0.9621943 0.9443946 0.9671554 -0.01000021 -0.9984282 -0.96650964 -0.9925837 -0.48193568 -0.9749565 -0.79769516 0.9651831 0.9678705 -0.9444472 0.9405674 0.97538495 -0.12366439 -0.9973782 0.05803521 0.9159217 -0.9627071 0.99898154 0.99429387 -0.985909 0.5787794 -0.9789403 -0.94316894 0.9999644 0.9156823 0.46314353 -0.01582102 0.98359734 0.5586145 -0.97360635 0.99058044 0.9995654 -0.9800733 0.99942625 0.8786553 -0.9992093 0.99916387 -0.5141877 0.99970615 0.28427476 0.86589384 0.7649907 -0.9986046 0.9999706 -0.9892468 0.99854743 -0.86872625 -0.9997323 0.98981035 -0.87805724 -0.9999373 -0.7842255 -0.97456616 -0.97237325 -0.729563 0.98718935 0.9992022 -0.5294769 ]] '''
但是上面的实现方法似乎不是很简单,还有更加简单的方法,思想来源与keras中,可以将整个模型model也当成是层layer来处理,实现如下面。
3.2 第二种实现方法
import keras import numpy as np from keras.datasets import mnist from keras.models import Model model=keras.models.load_model('./models/lenet5_weight.h5') #选择一张图片,选择第一张 x= np.expand_dims(x_test[1],axis=0) #[1,28,28,1] 的形状 # 将模型作为一个层,输出第7层的输出 layer_model = Model(inputs=model.input, outputs=model.layers[6].output) feature=layer_model.predict(x) print(feature) '''运行结果为: [[-0.99986297 -0.9988328 -0.9273474 0.9101525 -0.9054705 -0.95798373 0.9911243 0.78576803 0.99676156 0.39356467 -0.9724135 -0.74534595 0.8527011 -0.9968267 -0.9420816 -0.32765102 -0.41667578 0.99942905 0.92333794 0.7565034 -0.38416263 -0.994241 0.3781617 0.9621943 0.9443946 0.9671554 -0.01000021 -0.9984282 -0.96650964 -0.9925837 -0.48193568 -0.9749565 -0.79769516 0.9651831 0.9678705 -0.9444472 0.9405674 0.97538495 -0.12366439 -0.9973782 0.05803521 0.9159217 -0.9627071 0.99898154 0.99429387 -0.985909 0.5787794 -0.9789403 -0.94316894 0.9999644 0.9156823 0.46314353 -0.01582102 0.98359734 0.5586145 -0.97360635 0.99058044 0.9995654 -0.9800733 0.99942625 0.8786553 -0.9992093 0.99916387 -0.5141877 0.99970615 0.28427476 0.86589384 0.7649907 -0.9986046 0.9999706 -0.9892468 0.99854743 -0.86872625 -0.9997323 0.98981035 -0.87805724 -0.9999373 -0.7842255 -0.97456616 -0.97237325 -0.729563 0.98718935 0.9992022 -0.5294769 ]] '''
可见和上面的结果是一样的,
总结:
由于keras的层与模型之间实际上的转化关系,所以提供了非常灵活的输出方法,推荐使用第二种方法获得某一个层的输出。总结为以下几个主要的步骤(四步走):
import keras import numpy as np from keras.datasets import mnist from keras.models import Model # 第一步:准备输入数据 x= np.expand_dims(x_test[1],axis=0) #[1,28,28,1] 的形状 # 第二步:加载已经训练的模型 model=keras.models.load_model('./models/lenet5_weight.h5') # 第三步:将模型作为一个层,输出第7层的输出 layer_model = Model(inputs=model.input, outputs=model.layers[6].output) # 第四步:调用新建的“曾模型”的predict方法,得到模型的输出 feature=layer_model.predict(x) print(feature)
以上这篇keras小技巧——获取某一个网络层的输出方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 群星《2024好听新歌36》AI调整音效【WAV分轨】
- 梁朝伟.1986-朦胧夜雨裡(华星40经典)【华星】【WAV+CUE】
- 方芳.1996-得意洋洋【中唱】【WAV+CUE】
- 辛欣.2001-放120个心【上海音像】【WAV+CUE】
- 柏菲·万山红《花开原野1》限量开盘母带ORMCD[低速原抓WAV+CUE]
- 柏菲·万山红《花开原野2》限量开盘母带ORMCD[低速原抓WAV+CUE]
- 潘安邦《思念精选集全纪录》5CD[WAV+CUE]
- 杨千嬅《千嬅新唱金牌金曲》金牌娱乐 [WAV+CUE][985M]
- 杨钰莹《依然情深》首版[WAV+CUE][1G]
- 第五街的士高《印度激情版》3CD [WAV+CUE][2.4G]
- 三国志8重制版哪个武将智力高 三国志8重制版智力武将排行一览
- 三国志8重制版哪个武将好 三国志8重制版武将排行一览
- 三国志8重制版武将图像怎么保存 三国志8重制版武将图像设置方法
- 何方.1990-我不是那种人【林杰唱片】【WAV+CUE】
- 张惠妹.1999-妹力新世纪2CD【丰华】【WAV+CUE】