Pytorch凭借动态图机制,获得了广泛的使用,大有超越tensorflow的趋势,不过在工程应用上,TF仍然占据优势。有的时候我们会遇到这种情况,需要把模型应用到工业中,运用到实际项目上,TF支持的PB文件和TF的C++接口就成为了有效的工具。今天就给大家讲解一下Pytorch转成Keras的方法,进而我们也可以获得Pb文件,因为Keras是支持tensorflow的,我将会在下一篇博客讲解获得Pb文件,并使用Pb文件的方法。
Pytorch To Keras
首先,我们必须有清楚的认识,网上以及github上一些所谓的pytorch转换Keras或者Keras转换成Pytorch的工具代码几乎不能运行或者有使用的局限性(比如仅仅能转换某一些模型),但是我们是可以用这些转换代码中看出一些端倪来,比如二者的参数的尺寸(shape)的形式、channel的排序(first or last)是否一样,掌握到差异性,就能根据这些差异自己编写转换代码,没错,自己编写转换代码,是最稳妥的办法。整个过程也就分为两个部分。笔者将会以Nvidia开源的FlowNet为例,将开源的Pytorch代码转化为Keras模型。
按照Pytorch中模型的结构,编写对应的Keras代码,用keras的函数式API,构建起来会非常方便。
把Pytorch的模型参数,按照层的名称依次赋值给Keras的模型
以上两步虽然看上去简单,但实际我也走了不少弯路。这里一个关键的地方,就是参数的shape在两个框架中是否统一,那当然是不统一的。下面我以FlowNet为例。
Pytorch中的FlowNet代码
我们仅仅展示层名称和层参数,就不把整个结构贴出来了,否则会占很多的空间,形成水文。
先看用Keras搭建的flowNet模型,直接用model.summary()输出模型信息
__________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== input_1 (InputLayer) (None, 6, 512, 512) 0 __________________________________________________________________________________________________ conv0 (Conv2D) (None, 64, 512, 512) 3520 input_1[0][0] __________________________________________________________________________________________________ leaky_re_lu_1 (LeakyReLU) (None, 64, 512, 512) 0 conv0[0][0] __________________________________________________________________________________________________ zero_padding2d_1 (ZeroPadding2D (None, 64, 514, 514) 0 leaky_re_lu_1[0][0] __________________________________________________________________________________________________ conv1 (Conv2D) (None, 64, 256, 256) 36928 zero_padding2d_1[0][0] __________________________________________________________________________________________________ leaky_re_lu_2 (LeakyReLU) (None, 64, 256, 256) 0 conv1[0][0] __________________________________________________________________________________________________ conv1_1 (Conv2D) (None, 128, 256, 256 73856 leaky_re_lu_2[0][0] __________________________________________________________________________________________________ leaky_re_lu_3 (LeakyReLU) (None, 128, 256, 256 0 conv1_1[0][0] __________________________________________________________________________________________________ zero_padding2d_2 (ZeroPadding2D (None, 128, 258, 258 0 leaky_re_lu_3[0][0] __________________________________________________________________________________________________ conv2 (Conv2D) (None, 128, 128, 128 147584 zero_padding2d_2[0][0] __________________________________________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, 128, 128, 128 0 conv2[0][0] __________________________________________________________________________________________________ conv2_1 (Conv2D) (None, 128, 128, 128 147584 leaky_re_lu_4[0][0] __________________________________________________________________________________________________ leaky_re_lu_5 (LeakyReLU) (None, 128, 128, 128 0 conv2_1[0][0] __________________________________________________________________________________________________ zero_padding2d_3 (ZeroPadding2D (None, 128, 130, 130 0 leaky_re_lu_5[0][0] __________________________________________________________________________________________________ conv3 (Conv2D) (None, 256, 64, 64) 295168 zero_padding2d_3[0][0] __________________________________________________________________________________________________ leaky_re_lu_6 (LeakyReLU) (None, 256, 64, 64) 0 conv3[0][0] __________________________________________________________________________________________________ conv3_1 (Conv2D) (None, 256, 64, 64) 590080 leaky_re_lu_6[0][0] __________________________________________________________________________________________________ leaky_re_lu_7 (LeakyReLU) (None, 256, 64, 64) 0 conv3_1[0][0] __________________________________________________________________________________________________ zero_padding2d_4 (ZeroPadding2D (None, 256, 66, 66) 0 leaky_re_lu_7[0][0] __________________________________________________________________________________________________ conv4 (Conv2D) (None, 512, 32, 32) 1180160 zero_padding2d_4[0][0] __________________________________________________________________________________________________ leaky_re_lu_8 (LeakyReLU) (None, 512, 32, 32) 0 conv4[0][0] __________________________________________________________________________________________________ conv4_1 (Conv2D) (None, 512, 32, 32) 2359808 leaky_re_lu_8[0][0] __________________________________________________________________________________________________ leaky_re_lu_9 (LeakyReLU) (None, 512, 32, 32) 0 conv4_1[0][0] __________________________________________________________________________________________________ zero_padding2d_5 (ZeroPadding2D (None, 512, 34, 34) 0 leaky_re_lu_9[0][0] __________________________________________________________________________________________________ conv5 (Conv2D) (None, 512, 16, 16) 2359808 zero_padding2d_5[0][0] __________________________________________________________________________________________________ leaky_re_lu_10 (LeakyReLU) (None, 512, 16, 16) 0 conv5[0][0] __________________________________________________________________________________________________ conv5_1 (Conv2D) (None, 512, 16, 16) 2359808 leaky_re_lu_10[0][0] __________________________________________________________________________________________________ leaky_re_lu_11 (LeakyReLU) (None, 512, 16, 16) 0 conv5_1[0][0] __________________________________________________________________________________________________ zero_padding2d_6 (ZeroPadding2D (None, 512, 18, 18) 0 leaky_re_lu_11[0][0] __________________________________________________________________________________________________ conv6 (Conv2D) (None, 1024, 8, 8) 4719616 zero_padding2d_6[0][0] __________________________________________________________________________________________________ leaky_re_lu_12 (LeakyReLU) (None, 1024, 8, 8) 0 conv6[0][0] __________________________________________________________________________________________________ conv6_1 (Conv2D) (None, 1024, 8, 8) 9438208 leaky_re_lu_12[0][0] __________________________________________________________________________________________________ leaky_re_lu_13 (LeakyReLU) (None, 1024, 8, 8) 0 conv6_1[0][0] __________________________________________________________________________________________________ deconv5 (Conv2DTranspose) (None, 512, 16, 16) 8389120 leaky_re_lu_13[0][0] __________________________________________________________________________________________________ predict_flow6 (Conv2D) (None, 2, 8, 8) 18434 leaky_re_lu_13[0][0] __________________________________________________________________________________________________ leaky_re_lu_14 (LeakyReLU) (None, 512, 16, 16) 0 deconv5[0][0] __________________________________________________________________________________________________ upsampled_flow6_to_5 (Conv2DTra (None, 2, 16, 16) 66 predict_flow6[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 1026, 16, 16) 0 leaky_re_lu_11[0][0] leaky_re_lu_14[0][0] upsampled_flow6_to_5[0][0] __________________________________________________________________________________________________ inter_conv5 (Conv2D) (None, 512, 16, 16) 4728320 concatenate_1[0][0] __________________________________________________________________________________________________ deconv4 (Conv2DTranspose) (None, 256, 32, 32) 4202752 concatenate_1[0][0] __________________________________________________________________________________________________ predict_flow5 (Conv2D) (None, 2, 16, 16) 9218 inter_conv5[0][0] __________________________________________________________________________________________________ leaky_re_lu_15 (LeakyReLU) (None, 256, 32, 32) 0 deconv4[0][0] __________________________________________________________________________________________________ upsampled_flow5_to4 (Conv2DTran (None, 2, 32, 32) 66 predict_flow5[0][0] __________________________________________________________________________________________________ concatenate_2 (Concatenate) (None, 770, 32, 32) 0 leaky_re_lu_9[0][0] leaky_re_lu_15[0][0] upsampled_flow5_to4[0][0] __________________________________________________________________________________________________ inter_conv4 (Conv2D) (None, 256, 32, 32) 1774336 concatenate_2[0][0] __________________________________________________________________________________________________ deconv3 (Conv2DTranspose) (None, 128, 64, 64) 1577088 concatenate_2[0][0] __________________________________________________________________________________________________ predict_flow4 (Conv2D) (None, 2, 32, 32) 4610 inter_conv4[0][0] __________________________________________________________________________________________________ leaky_re_lu_16 (LeakyReLU) (None, 128, 64, 64) 0 deconv3[0][0] __________________________________________________________________________________________________ upsampled_flow4_to3 (Conv2DTran (None, 2, 64, 64) 66 predict_flow4[0][0] __________________________________________________________________________________________________ concatenate_3 (Concatenate) (None, 386, 64, 64) 0 leaky_re_lu_7[0][0] leaky_re_lu_16[0][0] upsampled_flow4_to3[0][0] __________________________________________________________________________________________________ inter_conv3 (Conv2D) (None, 128, 64, 64) 444800 concatenate_3[0][0] __________________________________________________________________________________________________ deconv2 (Conv2DTranspose) (None, 64, 128, 128) 395328 concatenate_3[0][0] __________________________________________________________________________________________________ predict_flow3 (Conv2D) (None, 2, 64, 64) 2306 inter_conv3[0][0] __________________________________________________________________________________________________ leaky_re_lu_17 (LeakyReLU) (None, 64, 128, 128) 0 deconv2[0][0] __________________________________________________________________________________________________ upsampled_flow3_to2 (Conv2DTran (None, 2, 128, 128) 66 predict_flow3[0][0] __________________________________________________________________________________________________ concatenate_4 (Concatenate) (None, 194, 128, 128 0 leaky_re_lu_5[0][0] leaky_re_lu_17[0][0] upsampled_flow3_to2[0][0] __________________________________________________________________________________________________ inter_conv2 (Conv2D) (None, 64, 128, 128) 111808 concatenate_4[0][0] __________________________________________________________________________________________________ predict_flow2 (Conv2D) (None, 2, 128, 128) 1154 inter_conv2[0][0] __________________________________________________________________________________________________ up_sampling2d_1 (UpSampling2D) (None, 2, 512, 512) 0 predict_flow2[0][0]
再看看Pytorch搭建的flownet模型
(conv0): Sequential( (0): Conv2d(6, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv1): Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv1_1): Sequential( (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv2): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv2_1): Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv3): Sequential( (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv3_1): Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv4): Sequential( (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv4_1): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv5): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv5_1): Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv6): Sequential( (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (conv6_1): Sequential( (0): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (deconv5): Sequential( (0): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (deconv4): Sequential( (0): ConvTranspose2d(1026, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (deconv3): Sequential( (0): ConvTranspose2d(770, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (deconv2): Sequential( (0): ConvTranspose2d(386, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) (inter_conv5): Sequential( (0): Conv2d(1026, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (inter_conv4): Sequential( (0): Conv2d(770, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (inter_conv3): Sequential( (0): Conv2d(386, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (inter_conv2): Sequential( (0): Conv2d(194, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (predict_flow6): Conv2d(1024, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (predict_flow5): Conv2d(512, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (predict_flow4): Conv2d(256, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (predict_flow3): Conv2d(128, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (predict_flow2): Conv2d(64, 2, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (upsampled_flow6_to_5): ConvTranspose2d(2, 2, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (upsampled_flow5_to_4): ConvTranspose2d(2, 2, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (upsampled_flow4_to_3): ConvTranspose2d(2, 2, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (upsampled_flow3_to_2): ConvTranspose2d(2, 2, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (upsample1): Upsample(scale_factor=4.0, mode=bilinear) ) conv0 Sequential( (0): Conv2d(6, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv0.0 Conv2d(6, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv0.1 LeakyReLU(negative_slope=0.1, inplace) conv1 Sequential( (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv1.0 Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) conv1.1 LeakyReLU(negative_slope=0.1, inplace) conv1_1 Sequential( (0): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv1_1.0 Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv1_1.1 LeakyReLU(negative_slope=0.1, inplace) conv2 Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv2.0 Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) conv2.1 LeakyReLU(negative_slope=0.1, inplace) conv2_1 Sequential( (0): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv2_1.0 Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv2_1.1 LeakyReLU(negative_slope=0.1, inplace) conv3 Sequential( (0): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv3.0 Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) conv3.1 LeakyReLU(negative_slope=0.1, inplace) conv3_1 Sequential( (0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv3_1.0 Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv3_1.1 LeakyReLU(negative_slope=0.1, inplace) conv4 Sequential( (0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv4.0 Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) conv4.1 LeakyReLU(negative_slope=0.1, inplace) conv4_1 Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv4_1.0 Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv4_1.1 LeakyReLU(negative_slope=0.1, inplace) conv5 Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv5.0 Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) conv5.1 LeakyReLU(negative_slope=0.1, inplace) conv5_1 Sequential( (0): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv5_1.0 Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv5_1.1 LeakyReLU(negative_slope=0.1, inplace) conv6 Sequential( (0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv6.0 Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)) conv6.1 LeakyReLU(negative_slope=0.1, inplace) conv6_1 Sequential( (0): Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) conv6_1.0 Conv2d(1024, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) conv6_1.1 LeakyReLU(negative_slope=0.1, inplace) deconv5 Sequential( (0): ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) deconv5.0 ConvTranspose2d(1024, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) deconv5.1 LeakyReLU(negative_slope=0.1, inplace) deconv4 Sequential( (0): ConvTranspose2d(1026, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) deconv4.0 ConvTranspose2d(1026, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) deconv4.1 LeakyReLU(negative_slope=0.1, inplace) deconv3 Sequential( (0): ConvTranspose2d(770, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) deconv3.0 ConvTranspose2d(770, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) deconv3.1 LeakyReLU(negative_slope=0.1, inplace) deconv2 Sequential( (0): ConvTranspose2d(386, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (1): LeakyReLU(negative_slope=0.1, inplace) ) deconv2.0 ConvTranspose2d(386, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) deconv2.1 LeakyReLU(negative_slope=0.1, inplace) inter_conv5 Sequential( (0): Conv2d(1026, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) inter_conv5.0 Conv2d(1026, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) inter_conv4 Sequential( (0): Conv2d(770, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) inter_conv4.0 Conv2d(770, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) inter_conv3 Sequential( (0): Conv2d(386, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) inter_conv3.0 Conv2d(386, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) inter_conv2 Sequential( (0): Conv2d(194, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) )
因为Pytorch模型用name_modules()输出不是按顺序的,动态图机制决定了只有在有数据流动之后才知道走过的路径。所以上面的顺序也是乱的。但我想表明的是,我用Keras搭建的模型确实是根据官方开源的Pytorch模型搭建的。
模型搭建完毕之后,就到了关键的步骤:给Keras模型赋值。
给Keras模型赋值
这个步骤其实注意三个点
Pytorch是channels_first的,Keras默认是channels_last,在代码开头加上这两句:
K.set_image_data_format(‘channels_first')
K.set_learning_phase(0)
众所周知,卷积层的权重是一个4维张量,那么,在Pytorch和keras中,卷积核的权重的形式是否一致的,那自然是不一致的,要不然我为啥还要写这一点。那么就涉及到Pytorch权重的变形。
既然卷积层权重形式在两个框架是不一致的,转置卷积自然也是不一致的。
我们先看看卷积层在两个框架中的形式
keras的卷积层权重形式
我们用以下代码看keras卷积层权重形式
for l in model.layers: print(l.name) for i, w in enumerate(l.get_weights()): print('%d'%i , w.shape)
第一个卷积层输出如下 0之后是卷积权重的shape,1之后的是偏置项
conv0
0 (3, 3, 6, 64)
1 (64,)
所以Keras的卷积层权重形式是[ height, width, input_channels, out_channels]
Pytorch的卷积层权重形式
net = FlowNet2SD() for n, m in net.named_parameters(): print(n) print(m.data.size())
conv0.0.weight
torch.Size([64, 6, 3, 3])
conv0.0.bias
torch.Size([64])
用上面的代码得到所有层的参数的shape,同样找到第一个卷积层的参数,查看shape。
通过对比我们可以发现,Pytorch的卷积层shape是[ out_channels, input_channels, height, width]的形式。
那么我们在取出Pytorch权重之后,需要用np.transpose改变一下权重的排序,才能送到Keras模型对应的层上。
Keras中转置卷积权重形式
deconv4
0 (4, 4, 256, 1026)
1 (256,)
代码仍然和上面一样,找到转置卷积的对应的位置,查看一下
可以看出在Keras中,转置卷积形式是 [ height, width, out_channels, input_channels]
Pytorch中转置卷积权重形式
deconv4.0.weight
torch.Size([1026, 256, 4, 4])
deconv4.0.bias
torch.Size([256])
代码仍然和上面一样,找到转置卷积的对应的位置,查看一下
可以看出在Pytorch中,转置卷积形式是 [ input_channels,out_channels,height, width]
小结
对于卷积层来说,Pytorch的权重需要使用
np.transpose(weight.data.numpy(), [2, 3, 1, 0])
才能赋值给keras模型对应的层的权重。
对于转置卷积来说,通过对比其实也是一样的。不信你去试试嘛。O(∩_∩)O哈哈~
对于偏置项,两种模块都是一维的向量,不需要处理。
有的情况还可能需要通道颠倒一下,但是很少需要这样做。
weights[::-1,::-1,:,:]
赋值
结束了预处理之后,我们就进入第二步,开始赋值了。
先看预处理的代码:
for k,v in weights_from_torch.items(): if 'bias' not in k: weights_from_torch[k] = v.data.numpy().transpose(2, 3, 1, 0)
赋值代码我只截了一部分供大家参考:
k_model = k_model() for layer in k_model.layers: current_layer_name = layer.name if current_layer_name=='conv0': weights = [weights_from_torch['conv0.0.weight'],weights_from_torch['conv0.0.bias']] layer.set_weights(weights) elif current_layer_name=='conv1': weights = [weights_from_torch['conv1.0.weight'],weights_from_torch['conv1.0.bias']] layer.set_weights(weights) elif current_layer_name=='conv1_1': weights = [weights_from_torch['conv1_1.0.weight'],weights_from_torch['conv1_1.0.bias']] layer.set_weights(weights)
首先就是定义Keras模型,用layers获得所有层的迭代器。
遍历迭代器,对一个层赋予相应的值。
赋值需要用save_weights,其参数需要是一个列表,形式和get_weights的返回结果一致,即 [ conv_weights, bias_weights]
最后祝愿大家能实现自己模型的迁移。工程开源在了个人Github,有详细的使用介绍,并且包含使用数据,大家可以直接运行。
以上这篇Pytorch转keras的有效方法,以FlowNet为例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】