创建一个NN
import tensorflow as tf
import numpy as np
#fake data x = np.linspace(-1, 1, 100)[:, np.newaxis] #shape(100,1) noise = np.random.normal(0, 0.1, size=x.shape) y = np.power(x, 2) + noise #shape(100,1) + noise tf_x = tf.placeholder(tf.float32, x.shape) #input x tf_y = tf.placeholder(tf.float32, y.shape) #output y l = tf.layers.dense(tf_x, 10, tf.nn.relu) #hidden layer o = tf.layers.dense(l, 1) #output layer loss = tf.losses.mean_squared_error(tf_y, o ) #compute loss train_op = tf.train.GradientDescentOptimizer(learning_rate=0.5).minimize(loss)
1.使用save对模型进行保存
sess= tf.Session() sess.run(tf.global_variables_initializer()) #initialize var in graph saver = tf.train.Saver() # define a saver for saving and restoring for step in range(100): #train sess.run(train_op,{tf_x:x, tf_y:y}) saver.save(sess, 'params/params.ckpt', write_meta_graph=False) # mate_graph is not recommend
生成三个文件,分别是checkpoint,.ckpt.data-00000-of-00001,.ckpt.index
2.使用restore对提取模型
在提取模型时,需要将模型结构再定义一遍,再将各参数加载出来
#bulid entire net again and restore tf_x = tf.placeholder(tf.float32, x.shape) tf_y = tf.placeholder(tf.float32, y.shape) l_ = tf.layers.dense(tf_x, 10, tf.nn.relu) o_ = tf.layers.dense(l_, 1) loss_ = tf.losses.mean_squared_error(tf_y, o_) sess = tf.Session() # don't need to initialize variables, just restoring trained variables saver = tf.train.Saver() # define a saver for saving and restoring saver.restore(sess, './params/params.ckpt')
3.有时会报错Not found:b1 not found in checkpoint
这时我们想知道我在文件中到底保存了什么内容,即需要读取出checkpoint中的tensor
import os from tensorflow.python import pywrap_tensorflow checkpoint_path = os.path.join('params','params.ckpt') # Read data from checkpoint file reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path) var_to_shape_map = reader.get_variable_to_shape_map() # Print tensor name and value f = open('params.txt','w') for key in var_to_shape_map: # write tensors' names and values in file print(key,file=f) print(reader.get_tensor(key),file=f) f.close()
运行后生成一个params.txt文件,在其中可以看到模型的参数。
补充知识:TensorFlow按时间保存检查点
一 实例
介绍一种更简便地保存检查点功能的方法——tf.train.MonitoredTrainingSession函数,该函数可以直接实现保存及载入检查点模型的文件。
演示使用MonitoredTrainingSession函数来自动管理检查点文件。
二 代码
import tensorflow as tf tf.reset_default_graph() global_step = tf.train.get_or_create_global_step() step = tf.assign_add(global_step, 1) with tf.train.MonitoredTrainingSession(checkpoint_dir='log/checkpoints',save_checkpoint_secs = 2) as sess: print(sess.run([global_step])) while not sess.should_stop(): i = sess.run( step) print( i)
三 运行结果
1 第一次运行后,会发现log文件夹下产生如下文件
2 第二次运行后,结果如下:
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Restoring parameters from log/checkpoints\model.ckpt-15147
INFO:tensorflow:Saving checkpoints for 15147 into log/checkpoints\model.ckpt.
[15147]
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
四 说明
本例是按照训练时间来保存的。通过指定save_checkpoint_secs参数的具体秒数,来设置每训练多久保存一次检查点。
可见程序自动载入检查点是从第15147次开始运行的。
五 注意
1 如果不设置save_checkpoint_secs参数,默认的保存时间是10分钟,这种按照时间保存的模式更适合用于使用大型数据集来训练复杂模型的情况。
2 使用该方法,必须要定义global_step变量,否则会报错误。
以上这篇tensorflow模型的save与restore,及checkpoint中读取变量方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 【雨果唱片】中国管弦乐《鹿回头》WAV
- APM亚流新世代《一起冒险》[FLAC/分轨][106.77MB]
- 崔健《飞狗》律冻文化[WAV+CUE][1.1G]
- 罗志祥《舞状元 (Explicit)》[320K/MP3][66.77MB]
- 尤雅.1997-幽雅精粹2CD【南方】【WAV+CUE】
- 张惠妹.2007-STAR(引进版)【EMI百代】【WAV+CUE】
- 群星.2008-LOVE情歌集VOL.8【正东】【WAV+CUE】
- 罗志祥《舞状元 (Explicit)》[FLAC/分轨][360.76MB]
- Tank《我不伟大,至少我能改变我。》[320K/MP3][160.41MB]
- Tank《我不伟大,至少我能改变我。》[FLAC/分轨][236.89MB]
- CD圣经推荐-夏韶声《谙2》SACD-ISO
- 钟镇涛-《百分百钟镇涛》首批限量版SACD-ISO
- 群星《继续微笑致敬许冠杰》[低速原抓WAV+CUE]
- 潘秀琼.2003-国语难忘金曲珍藏集【皇星全音】【WAV+CUE】
- 林东松.1997-2039玫瑰事件【宝丽金】【WAV+CUE】