python进行矩阵运算的方法:

1、矩阵相乘

>a1=mat([1,2]);   
>a2=mat([[1],[2]]);
>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
> a3
matrix([[5]])

2、矩阵对应元素相乘

>a1=mat([1,1]);
>a2=mat([2,2]);
>a3=multiply(a1,a2)
> a3
matrix([[2, 2]])

multiply()函数:数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致

3、矩阵点乘

>a1=mat([2,2]);
>a2=a1*2
>a2
matrix([[4, 4]])

4、矩阵求逆

>a1=mat(eye(2,2)*0.5)
> a1
matrix([[ 0.5, 0. ],
    [ 0. , 0.5]])
>a2=a1.I #求矩阵matrix([[0.5,0],[0,0.5]])的逆矩阵
> a2
matrix([[ 2., 0.],
    [ 0., 2.]])

5、矩阵转置

> a1=mat([[1,1],[0,0]])
> a1
matrix([[1, 1],
    [0, 0]])
> a2=a1.T
> a2
matrix([[1, 0],
    [1, 0]])

6、计算每一列、行的和

>a2=a1.sum(axis=0) #列和,这里得到的是1*2的矩阵
> a2
matrix([[7, 6]])
>a3=a1.sum(axis=1) #行和,这里得到的是3*1的矩阵
> a3
matrix([[2],
    [5],
    [6]])
>a4=sum(a1[1,:]) #计算第一行所有列的和,这里得到的是一个数值
> a4
5          #第0行:1+1;第2行:2+3;第3行:4+2

内容扩展:

numpy矩阵运算

(1) 矩阵点乘:m=multiply(A,B)

(2) 矩阵乘法:m1=a*b m2=a.dot(b)

(3) 矩阵求逆:a.I

(4) 矩阵转置:a.T

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。