在使用python做大数据和机器学习处理过程中,首先需要读取hdfs数据,对于常用格式数据一般比较容易读取,parquet略微特殊。从hdfs上使用python获取parquet格式数据的方法(当然也可以先把文件拉到本地再读取也可以):
1、安装anaconda环境。
2、安装hdfs3。
conda install hdfs3
3、安装fastparquet。
conda install fastparquet
4、安装python-snappy。
conda install python-snappy
5、读取文件
##namenode mode: from hdfs3 import HDFileSystem from fastparquet import ParquetFile hdfs = HDFileSystem(host=IP, port=8020) sc = hdfs.open pf = ParquetFile(filename, open_with=sc) df = pf.to_pandas() ##返回pandas的DataFrame类型 ##HA mode: from hdfs3 import HDFileSystem from fastparquet import ParquetFile host = "nameservice1" conf = { "dfs.nameservices":"nameservice1", ...... } hdfs = HDFileSystem(host = host, pars = conf) ......
python访问HDFS HA的三种方法
python访问hdfs常用的包有三个,如下:
1、hdfs3
其实从安装便捷性和使用上来说,并不推荐hdfs3,因为他的系统依赖和网络要求较高,但是某些情况下使用hdfs3会比较方便,官网资料点这里。如上面介绍,IP直接访问namenode:
from hdfs3 import HDFileSystem hdfs = HDFileSystem(host=namenode, port=8020) hdfs.ls('/tmp')
HA访问:
host = "nameservice1" conf = {"dfs.nameservices": "nameservice1", "dfs.ha.namenodes.nameservice1": "namenode113,namenode188", "dfs.namenode.rpc-address.nameservice1.namenode113": "hostname_of_server1:8020", "dfs.namenode.rpc-address.nameservice1.namenode188": "hostname_of_server2:8020", "dfs.namenode.http-address.nameservice1.namenode188": "hostname_of_server1:50070", "dfs.namenode.http-address.nameservice1.namenode188": "hostname_of_server2:50070", "hadoop.security.authentication": "kerberos" } fs = HDFileSystem(host=host, pars=conf) ##或者下面这种配置 host = "ns1" conf = { "dfs.nameservices":"ns1", "dfs.ha.namenodes.ns1":"namenode122,namenode115", "dfs.namenode.rpc-address.ns1.namenode122":"nnlab01:8020", "dfs.namenode.servicerpc-address.ns1.namenode122":"nnlab01:8022", "dfs.namenode.http-address.ns1.namenode122":"nnlab01:50070", "dfs.namenode.https-address.ns1.namenode122":"nnlab01:50470", "dfs.namenode.rpc-address.ns1.namenode115":"nnlab02:8020", "dfs.namenode.servicerpc-address.ns1.namenode115":"nnlab02:8022", "dfs.namenode.http-address.ns1.namenode115":"nnlab02:50070", "dfs.namenode.https-address.ns1.namenode115":"nnlab02:50470", } hdfs = HDFileSystem(host = host, pars = conf)
2、hdfs
这种方法在使用的时候配置比较简单,官网资料也比较丰富,但是需要注意的是该API可以模拟用户访问,权限较大。IP直接访问:
import hdfs
client = hdfs.client.InsecureClient(url="http://namenode:50070", user="hdfs")
HA访问:
import hdfs
client = hdfs.client.InsecureClient(url="http://namenode1:50070;http://namenode2:50070", user="hdfs")
3、pyhdfs
安装命令:pip install PyHDFS
官网地址,直接访问:
import pyhdfs
client = pyhdfs.HdfsClient(hosts="namenode:50070",user_name="hdfs")
HA访问
import pyhdfs
client = pyhdfs.HdfsClient(hosts=["namenode1:50070","namenode2:50070"],user_name="hdfs")
补充知识:python spark中parquet文件写到hdfs,同时避免太多的小文件(block小文件合并)
在pyspark中,使用数据框的文件写出函数write.parquet经常会生成太多的小文件,例如申请了100个block,而每个block中的结果
只有几百K,这在机器学习算法的结果输出中经常出现,这是一种很大的资源浪费,那么如何同时避免太多的小文件(block小文件合并)?
其实有一种简单方法,该方法需要你对输出结果的数据量有个大概估计,然后使用Dataframe中的coalesce函数来指定输出的block数量
即可,具体使用代码如下:
df.coalesce(2).write.parquet(path,mode)
这里df是指你要写出的数据框,coalesce(2)指定了写到2个block中,一个block默认128M,path是你的写出路径,mode是写出模式,常用的是
"overwrite"和"append"。
以上这篇python读取hdfs上的parquet文件方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 《怪猎荒野》PS5Pro主机版对比:B测性能都不稳定
- 黄宝欣.1992-黄宝欣金装精选2CD【HOMERUN】【WAV+CUE】
- 群星.1996-宝丽金流行爆弹精丫宝丽金】【WAV+CUE】
- 杜德伟.2005-独领风骚新歌精选辑3CD【滚石】【WAV+CUE】
- 安与骑兵《心无疆界》[低速原抓WAV+CUE]
- 柏菲唱片-群星〈胭花四乐〉2CD[原抓WAV+CUE]
- 金典女声发烧靓曲《ClassicBeautifulSound》2CD[低速原抓WAV+CUE]
- 王杰1992《封锁我一生》粤语专辑[WAV+CUE][1G]
- 群星《一人一首成名曲 (欧美篇)》6CD[WAV/MP3][7.39G]
- 东来东往2004《回到我身边·别说我的眼泪你无所谓》先之唱片[WAV+CUE][1G]
- MF唱片-《宝马[在真HD路上]》2CD[低速原抓WAV+CUE]
- 李娜《相信我》新时代[WAV+CUE]
- 2019明达发烧碟MasterSuperiorAudiophile[WAV+CUE]
- 蔡幸娟.1993-相爱容易相处难【飞碟】【WAV+CUE】
- 陆虎.2024-是否愿意成为我的全世界【Hikoon】【FLAC分轨】