Tensorflow支持基于cuda内核与cudnn的GPU加速,Keras出现较晚,为Tensorflow的高层框架,由于Keras使用的方便性与很好的延展性,之后更是作为Tensorflow的官方指定第三方支持开源框架。
但两者在使用GPU时都有一个特点,就是默认为全占满模式。在训练的情况下,特别是分步训练时会导致显存溢出,导致程序崩溃。
可以使用自适应配置来调整显存的使用情况。
一、Tensorflow
1、指定显卡
代码中加入
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
或者在运行代码前,在终端
export CUDA_VISIBLE_DEVICES=0
2、为显存分配使用比例
在建立tf.Session加入设置数据(显存使用比例为1/3),但有时你虽然设置了使用上限,在程序需要更高显存时还是会越过该限制
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
3、自适应分配
会自适应分配显存,不会将显存全部分配导致资源浪费
config = tf.ConfigProto() config.gpu_options.allow_growth=True sess = tf.Session(config=config)
二、Keras
与tensorflow大差不差,就是将tf.Session配置转置Keras配置
1、指定显卡
代码中加入
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
或者在运行代码前,在终端
export CUDA_VISIBLE_DEVICES=0
2、为显存分配使用比例
import tensorflow as tf import keras.backend.tensorflow_backend as KTF config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.333 session = tf.Session(config=config) KTF.set_session(session)
3、自适应分配
import keras.backend.tensorflow_backend as KTF config = tf.ConfigProto() config.gpu_options.allow_growth=True session = tf.Session(config=config) KTF.set_session(session)
4、如有设置fit_generator
将多线程关闭
#可将 use_multiprocessing=True #改为 use_multiprocessing=False
补充知识:Keras 自动分配显存,不占用所有显存
自动分配显存,不占用所有显存
import keras.backend.tensorflow_backend as KTF import tensorflow as tf import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" config = tf.ConfigProto() config.gpu_options.allow_growth=True #不全部占满显存, 按需分配 sess = tf.Session(config=config) KTF.set_session(sess)
以上这篇Tensorflow与Keras自适应使用显存方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
- 林俊吉.2012-将你惜命命【美华】【WAV+CUE】
- 晓雅《分享》DTS-WAV
- 黑鸭子2008-飞歌[首版][WAV+CUE]
- 黄乙玲1989-水泼落地难收回[日本天龙版][WAV+CUE]
- 周深《反深代词》[先听版][FLAC/分轨][310.97MB]
- 姜育恒1984《什么时候·串起又散落》台湾复刻版[WAV+CUE][1G]
- 那英《如今》引进版[WAV+CUE][1G]
- 蔡幸娟.1991-真的让我爱你吗【飞碟】【WAV+CUE】
- 群星.2024-好团圆电视剧原声带【TME】【FLAC分轨】
- 陈思安.1990-国语钢琴酒吧5CD【欣代唱片】【WAV+CUE】
- 莫文蔚《莫后年代20周年世纪典藏》3CD[WAV+CUE][2G]
- 张惠妹《我要快乐》华纳[WAV+CUE][1G]
- 罗大佑1982《之乎者也》无法盗版的青春套装版 [WAV+CUE][1G]
- 曾庆瑜1989-款款柔情[日本东芝版][WAV+CUE]
- Scelsi-IntegraledesquatuorsacordesetTrioacordes-QuatuorMolinari(2024)[24bit-WAV]