最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Batch的中的数据转变成正太分布,在推理过程中使用训练过程中的参数对数据进行处理,然而网络并不知道你是在训练还是测试阶段,因此,需要手动的加上,需要在测试和训练阶段使用如下函数。
model.train() or model.eval()
BN类的定义见pytorch中文参考文档
补充知识:关于pytorch中BN层(具体实现)的一些小细节
最近在做目标检测,需要把训好的模型放到嵌入式设备上跑前向,因此得把各种层的实现都用C手撸一遍,,,此为背景。
其他层没什么好说的,但是BN层这有个小坑。pytorch在打印网络参数的时候,只打出weight和bias这两个参数。咦,说好的BN层有四个参数running_mean、running_var 、gamma 、beta的呢?一开始我以为是pytorch把BN层的计算简化成weight * X + bias,但马上反应过来应该没这么简单,因为pytorch中只有可学习的参数才称为parameter。上网找了一些资料但都没有说到这么细的,毕竟大部分用户使用时只要模型能跑起来就行了,,,于是开始看BN层有哪些属性,果然发现了熟悉的running_mean和running_var,原来pytorch的BN层实现并没有不同。这里吐个槽:为啥要把gamma和beta改叫weight、bias啊,很有迷惑性的好不好,,,
扯了这么多,干脆捋一遍pytorch里BN层的具体实现过程,帮自己理清思路,也可以给大家提供参考。再吐槽一下,在网上搜“pytorch bn层”出来的全是关于这一层怎么用的、初始化时要输入哪些参数,没找到一个pytorch中BN层是怎么实现的,,,
众所周知,BN层的输出Y与输入X之间的关系是:Y = (X - running_mean) / sqrt(running_var + eps) * gamma + beta,此不赘言。其中gamma、beta为可学习参数(在pytorch中分别改叫weight和bias),训练时通过反向传播更新;而running_mean、running_var则是在前向时先由X计算出mean和var,再由mean和var以动量momentum来更新running_mean和running_var。所以在训练阶段,running_mean和running_var在每次前向时更新一次;在测试阶段,则通过net.eval()固定该BN层的running_mean和running_var,此时这两个值即为训练阶段最后一次前向时确定的值,并在整个测试阶段保持不变。
以上这篇浅谈pytorch中的BN层的注意事项就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 张真.1993-失恋十四行【上华】【WAV+CUE】
- 钟明秋《爱有天意HQCD》[低速原抓WAV+CUE]
- 孙云岗唢呐《金声玉振[HIFI珍藏版]》[低速原抓WAV+CUE]
- 谭艳精讯TEST-CD试音39号》2CD[DTS-WAV]
- 姚璎格《发烧女中音》DSD版[低速原抓WAV+CUE][1G]
- 张玮伽《微风细雨DSD》发烧大碟[WAV+CUE][1.1G]
- 群星《2024好听新歌14》十倍音质 U盘音乐 [WAV分轨][966M]
- s14全球总决赛T1战队队员都有谁 LOLs14全球总决赛T1战队介绍
- 英雄联盟faker身价有10亿吗 英雄联盟faker身价介绍一览
- faker大魔王称号怎么来的 faker大魔王称号来源介绍
- PS5 Pro上的蒂法更美了!博主盛赞新机1000%值得购买
- 腾讯互娱再离职一员大将!或因供应商贪腐
- Ayaneo3游戏掌机预热:旗舰定位、造型圆润自带底键
- 动力火车.1999-背叛情歌【上华】【WAV+CUE】
- 刘力扬.2019-Neon.Lit虹【摩登天空】【FLAC分轨】