对于多维的稀疏数据,TensorFlow 支持 SparseTensor 表示。

官方文档地址:https://tensorflow.google.cn/api_guides/python/sparse_ops

构造稀疏张量

SparseTensor(indices, values, dense_shape)

indices是一个维度为(n, ndims)的2-D int64张量,指定非零元素的位置。比如indices=[[1,3], [2,4]]表示[1,3]和[2,4]位置的元素为非零元素。n表示非零元素的个数,ndims表示构造的稀疏张量的维数。

values是一个维度为(N)的1-D张量,对应indices所指位置的元素值。

dense_shape是一个维度为(ndims)的1-D张量,代表稀疏张量的维度。

tf.SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2], dense_shape=[3, 4])

[[1, 0, 0, 0]
 [0, 0, 2, 0]
 [0, 0, 0, 0]]

转换

将稀疏张量转为普通矩阵。

tf.sparse_to_dense(
sparse_indices,
output_shape,
sparse_values,
default_value=0,
validate_indices=True,
name=None
)

sparse_indices是那些非零元素的位置。

sparse_indices是实数,该矩阵为一维矩阵,指定一维矩阵的某一个元素位置

sparse_indices是向量,该矩阵为一维矩阵,指定一维矩阵的多个元素

sparse_indices是二维矩阵,该矩阵为多维矩阵,指定多维矩阵的多个元素。

output_shape是矩阵的维度。

sparse_value是对应sparse_indices所指位置的元素值。

default_value是未指定元素的默认值,一般为0。

import tensorflow as tf 

mysparse_indices = tf.constant(5)
mymatrix = tf.sparse_to_dense(mysparse_indices, [11], 10)
with tf.Session() as sess:
  result = sess.run(mymatrix)
  print(result)

//[0 0 0 0 0 10 0 0 0 0 0]

SparseTensor和SparseTensorValue

两者的参数相同。

在计算图中定义稀疏张量时,使用SparseTensor;在feed数据时使用SparseTensorValue。

补充知识:彻底搞懂tensorflow里的张量(tensor)

1.引言

学习卷积神经网络(CNN)的时候,最重要的就是搞清楚网络各层的神经元输入输出的数据结构(即张量)。如果仅用线性代数所学的矩阵,向量来理解张量,一定会搞得一头雾水。因此很有必要搞清楚张量是什么东西。

首先明确:张量最主要的两个参数: rank(阶,或维数)、shape(形状)

2.什么是张量

下图是张量的直观的示意:张量是标量、向量、矩阵的集合和推广。

浅谈TensorFlow之稀疏张量表示

3.什么是rank

rank 数学实例 Python 例子 0 纯数字(只有大小) s=352 1 向量(1个基本向量) v = [1.1, 2.2, 3.3] 2 矩阵(两个基本向量) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 3 数据立体(3个基本向量) t = [ [[2], [4], [6]] , [[8], [10], [12]] , [[14], [16], [18]] ] n n个基本向量 …

可以发现:可以数括号[ ]的层数来确定张量的维数(阶)

什么是基本向量

基本向量(basis vector):几个basis vector就是从几个方面来描述一组数据。

举例说明:

一维张量:概念和向量完全一样。图中的白线就是一个向量,当然了,在三维空间向量有三个分向量(分别是x方向、y方向、z方向)

浅谈TensorFlow之稀疏张量表示

二维张量:对下面这个长方形施加一个力,怎么来描述?

我们把可以把这个长方形就xoy、xoz、yoz三个平面截下来,之后在每一个平面上再分析受力情况。

两个basis vector出来了:一个用来描述截面方向(这是一个三维向量);另一个用来描述此截面的受力情况(当然这也是一个三维向量)

浅谈TensorFlow之稀疏张量表示

那么我们可以用作用在yoz平面(此平面的法向量是x轴单位向量),受力的x轴分量用Pxx来表示,以此推广到含有9个元素的矩阵,这就是一个2维张量。

换句话来解释:在一个三维空间,我们从2个基本向量来描述一个东西,那么这个张量所含有的元素个数应该是3的2次方等于9个。每个元素能得到2个基本向量的注释。这就是一个2维的张量

浅谈TensorFlow之稀疏张量表示

三维张量:

继续推广,每个元素有三个基本向量注释。三维的张量形状就像是叠起来的矩阵。

浅谈TensorFlow之稀疏张量表示

最后品一品这句话

浅谈TensorFlow之稀疏张量表示

4.什么是shape

shape指明每一层有多少个元素。

比如[2,3,4]是指第一层2个元素,第二层3个元素,第三层4个元素,通过这个我们就可以知道这个张量一共有2 × 3 × 4=24 个元素。而且它有3层,因此可以知道这个张量的rank=3

注意:读取元素,从外括号往内括号读

下面这个代码也能说明问题。

import tensorflow as tf
# 定义了一个张量,有6个元素,设置他的形状是[2.3]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2,3])
with tf.Session() as session:
  print(session.run(a))

打印的结果是

[[1 2 3] [4 5 6]]

以上这篇浅谈TensorFlow之稀疏张量表示就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?