在编写自动化测试用例的时候,每次登录都需要输入验证码,后来想把让python自己识别图片里的验证码,不需要自己手动登陆,所以查了一下识别功能怎么实现,做一下笔记。

首选导入一些用到的库,re、Image、pytesseract、selenium、time

import re # 用于正则
from PIL import Image # 用于打开图片和对图片处理
import pytesseract # 用于图片转文字
from selenium import webdriver # 用于打开网站
import time # 代码运行停顿

首先需要获取验证码图片,才能进一步识别。

创建类,定义webdriver和find_element_by_selector方法,用来打开网页和定位验证码图片的元素

class VerificationCode:
  def __init__(self):
    self.driver = webdriver.Firefox()
    self.find_element = self.driver.find_element_by_css_selector

然后打开浏览器截取验证码图片

 def get_pictures(self):
    self.driver.get('http://123.255.123.3') # 打开登陆页面
    self.driver.save_screenshot('pictures.png') # 全屏截图
    page_snap_obj = Image.open('pictures.png')
    img = self.find_element('#pic') # 验证码元素位置
    time.sleep(1)
    location = img.location
    size = img.size # 获取验证码的大小参数
    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']
    image_obj = page_snap_obj.crop((left, top, right, bottom)) # 按照验证码的长宽,切割验证码
    image_obj.show() # 打开切割后的完整验证码
    self.driver.close() # 处理完验证码后关闭浏览器
    return image_obj

未处理前的验证码图片如下:

python 识别登录验证码图片功能的实现代码(完整代码)

未处理的验证码图片,对于python来说识别率较低,仔细看可以发现图片里有很对五颜六色扰乱识别的点,非常影响识别率。

下面对获取的验证码进行处理。

首先用convert把图片转成黑白色。设置threshold阈值,超过阈值的为黑色

def processing_image(self):
    image_obj = self.get_pictures() # 获取验证码
    img = image_obj.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    threshold = 160 # 该阈值不适合所有验证码,具体阈值请根据验证码情况设置
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
      for x in range(w):
        if pixdata[x, y] < threshold:
          pixdata[x, y] = 0
        else:
          pixdata[x, y] = 255
    return img

经过灰度处理后的图片

python 识别登录验证码图片功能的实现代码(完整代码)

然后删除一些扰乱识别的像素点。

  def delete_spot(self):
    images = self.processing_image()
    data = images.getdata()
    w, h = images.size
    black_point = 0
    for x in range(1, w - 1):
      for y in range(1, h - 1):
        mid_pixel = data[w * y + x] # 中央像素点像素值
        if mid_pixel < 50: # 找出上下左右四个方向像素点像素值
          top_pixel = data[w * (y - 1) + x]
          left_pixel = data[w * y + (x - 1)]
          down_pixel = data[w * (y + 1) + x]
          right_pixel = data[w * y + (x + 1)]
          # 判断上下左右的黑色像素点总个数
          if top_pixel < 10:
            black_point += 1
          if left_pixel < 10:
            black_point += 1
          if down_pixel < 10:
            black_point += 1
          if right_pixel < 10:
            black_point += 1
          if black_point < 1:
            images.putpixel((x, y), 255)
          black_point = 0
    # images.show()
    return images

经过去除噪点处理后的图片

python 识别登录验证码图片功能的实现代码(完整代码)

最后把处理后的图片转成文字。

先设置pytesseract的路径,因为默认路径是错的,然后转换图片为文字,由于个别图片中识别会出现处理遗漏,会被识别成空格或则点或则分号什么的,所以增加了一个去除验证码中特殊字符的处理。

PS:tesseract文件下载链接

def image_str(self):
    image = self.delete_spot()
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # 设置pyteseract路径
    result = pytesseract.image_to_string(image) # 图片转文字
    resultj = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", result) # 去除识别出来的特殊字符
    result_four = resultj[0:4] # 只获取前4个字符
    # print(resultj) # 打印识别的验证码
    return result_four

完整代码如下:

import re # 用于正则
from PIL import Image # 用于打开图片和对图片处理
import pytesseract # 用于图片转文字
from selenium import webdriver # 用于打开网站
import time # 代码运行停顿
 
 
class VerificationCode:
  def __init__(self):
    self.driver = webdriver.Firefox()
    self.find_element = self.driver.find_element_by_css_selector
 
  def get_pictures(self):
    self.driver.get('http://123.255.123.3') # 打开登陆页面
    self.driver.save_screenshot('pictures.png') # 全屏截图
    page_snap_obj = Image.open('pictures.png')
    img = self.find_element('#pic') # 验证码元素位置
    time.sleep(1)
    location = img.location
    size = img.size # 获取验证码的大小参数
    left = location['x']
    top = location['y']
    right = left + size['width']
    bottom = top + size['height']
    image_obj = page_snap_obj.crop((left, top, right, bottom)) # 按照验证码的长宽,切割验证码
    image_obj.show() # 打开切割后的完整验证码
    self.driver.close() # 处理完验证码后关闭浏览器
    return image_obj
 
  def processing_image(self):
    image_obj = self.get_pictures() # 获取验证码
    img = image_obj.convert("L") # 转灰度
    pixdata = img.load()
    w, h = img.size
    threshold = 160
    # 遍历所有像素,大于阈值的为黑色
    for y in range(h):
      for x in range(w):
        if pixdata[x, y] < threshold:
          pixdata[x, y] = 0
        else:
          pixdata[x, y] = 255
    return img
 
  def delete_spot(self):
    images = self.processing_image()
    data = images.getdata()
    w, h = images.size
    black_point = 0
    for x in range(1, w - 1):
      for y in range(1, h - 1):
        mid_pixel = data[w * y + x] # 中央像素点像素值
        if mid_pixel < 50: # 找出上下左右四个方向像素点像素值
          top_pixel = data[w * (y - 1) + x]
          left_pixel = data[w * y + (x - 1)]
          down_pixel = data[w * (y + 1) + x]
          right_pixel = data[w * y + (x + 1)]
          # 判断上下左右的黑色像素点总个数
          if top_pixel < 10:
            black_point += 1
          if left_pixel < 10:
            black_point += 1
          if down_pixel < 10:
            black_point += 1
          if right_pixel < 10:
            black_point += 1
          if black_point < 1:
            images.putpixel((x, y), 255)
          black_point = 0
    # images.show()
    return images
 
  def image_str(self):
    image = self.delete_spot()
    pytesseract.pytesseract.tesseract_cmd = r"C:\Program Files\Tesseract-OCR\tesseract.exe" # 设置pyteseract路径
    result = pytesseract.image_to_string(image) # 图片转文字
    resultj = re.sub(u"([^\u4e00-\u9fa5\u0030-\u0039\u0041-\u005a\u0061-\u007a])", "", result) # 去除识别出来的特殊字符
    result_four = resultj[0:4] # 只获取前4个字符
    # print(resultj) # 打印识别的验证码
    return result_four
 
if __name__ == '__main__':
  a = VerificationCode()
  a.image_str()

看评论有很多人需要tesseract.exe文件,但是由于文件过大,发邮件会出现无法下载的情况,有需要的可以在一下连接里下载tesseract.exe文件

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

RTX 5090要首发 性能要翻倍!三星展示GDDR7显存

三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。

首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。

据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。