前言最近在学习过程中需要用到pytorch框架,简单学习了一下,写了一个简单的案例,记录一下pytorch中搭建一个识别网络基础的东西。对应一位博主写的tensorflow的识别mnist数据集,将其改为pytorch框架,也可以详细看到两个框架大体的区别。
Tensorflow版本转载来源(CSDN博主「兔八哥1024」):https://www.jb51.net/article/191157.htm
Pytorch实战mnist手写数字识别
#需要导入的包 import torch import torch.nn as nn#用于构建网络层 import torch.optim as optim#导入优化器 from torch.utils.data import DataLoader#加载数据集的迭代器 from torchvision import datasets, transforms#用于加载mnsit数据集 #下载数据集 train_set = datasets.MNIST('./data', train=True, download=True,transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1037,), (0.3081,)) ])) test_set = datasets.MNIST('./data', train=False, download=True,transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1037,), (0.3081,)) ])) #构建网络(网络结构对应tensorflow的那一篇文章) class Net(nn.Module): def __init__(self, num_classes=10): super(Net, self).__init__() self.features = nn.Sequential( nn.Conv2d(1, 32, kernel_size=5, stride=1, padding=2), nn.MaxPool2d(kernel_size=2,stride=2), nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2), nn.MaxPool2d(kernel_size=2,stride=2), ) self.classifier = nn.Sequential( nn.Linear(3136, 7*7*64), nn.Linear(3136, num_classes), ) def forward(self,x): x = self.features(x) x = torch.flatten(x, 1) x = self.classifier(x) return x net=Net() net.cuda()#用GPU运行 #计算误差,使用adam优化器优化误差 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), 1e-2) train_data = DataLoader(train_set, batch_size=128, shuffle=True) test_data = DataLoader(test_set, batch_size=128, shuffle=False) #训练过程 for epoch in range(1): net.train() ##在进行训练时加上train(),测试时加上eval() batch = 0 for batch_images, batch_labels in train_data: average_loss = 0 train_acc = 0 ##在pytorch0.4之后将Variable 与tensor进行合并,所以这里不需要进行Variable封装 if torch.cuda.is_available(): batch_images, batch_labels = batch_images.cuda(),batch_labels.cuda() #前向传播 out = net(batch_images) loss = criterion(out,batch_labels) average_loss = loss prediction = torch.max(out,1)[1] # print(prediction) train_correct = (prediction == batch_labels).sum() ##这里得到的train_correct是一个longtensor型,需要转换为float train_acc = (train_correct.float()) / 128 optimizer.zero_grad() #清空梯度信息,否则在每次进行反向传播时都会累加 loss.backward() #loss反向传播 optimizer.step() ##梯度更新 batch+=1 print("Epoch: %d/%d || batch:%d/%d average_loss: %.3f || train_acc: %.2f" %(epoch, 20, batch, float(int(50000/128)), average_loss, train_acc)) # 在测试集上检验效果 net.eval() # 将模型改为预测模式 for idx,(im1, label1) in enumerate(test_data): if torch.cuda.is_available(): im, label = im1.cuda(),label1.cuda() out = net(im) loss = criterion(out, label) eval_loss = loss pred = torch.max(out,1)[1] num_correct = (pred == label).sum() acc = (num_correct.float())/ 128 eval_acc = acc print('EVA_Batch:{}, Eval Loss: {:.6f}, Eval Acc: {:.6f}' .format(idx,eval_loss , eval_acc))
运行结果:
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月19日
2024年11月19日
- 好薇2024《兵哥哥》1:124K黄金母盘[WAV+CUE]
- 胡歌.2006-珍惜(EP)【步升大风】【FLAC分轨】
- 洪荣宏.2014-拼乎自己看【华特】【WAV+CUE】
- 伊能静.1999-从脆弱到勇敢1987-1996精选2CD【华纳】【WAV+CUE】
- 刘亮鹭《汽车DJ玩主》[WAV+CUE][1.1G]
- 张杰《最接近天堂的地方》天娱传媒[WAV+CUE][1.1G]
- 群星《2022年度发烧天碟》无损黑胶碟 2CD[WAV+CUE][1.4G]
- 罗文1983-罗文甄妮-射雕英雄传(纯银AMCD)[WAV+CUE]
- 群星《亚洲故事香港纯弦》雨果UPMAGCD2024[低速原抓WAV+CUE]
- 群星《经典咏流传》限量1:1母盘直刻[低速原抓WAV+CUE]
- 庾澄庆1993《老实情歌》福茂唱片[WAV+CUE][1G]
- 许巍《在别处》美卡首版[WAV+CUE][1G]
- 林子祥《单手拍掌》华纳香港版[WAV+CUE][1G]
- 郑秀文.1997-我们的主题曲【华纳】【WAV+CUE】
- 群星.2001-生命因爱动听电影原创音乐AVCD【MEDIA】【WAV+CUE】