Huffman 编码是一种数据压缩算法。我们常用的 zip 压缩,其核心就是 Huffman 编码,还有在 HTTP/2 中,Huffman 编码被用于 HTTP 头部的压缩。

本文就来用 PHP 来实践一下 Huffman 编码和解码。

1. 编码

字数统计

Huffman编码的第一步就是要统计文档中每个字符出现的次数,PHP的内置函数 count_chars() 就可以做到:

$input = file_get_contents('input.txt');
$stat = count_chars($input, 1);

构造Huffman树

接下来根据统计结果构造Huffman树,构造方法在 Wikipedia 有详细的描述。这里用PHP写了一个简易版的:

$huffmanTree = [];
foreach ($stat as $char => $count) {
  $huffmanTree[] = [
    'k' => chr($char),
    'v' => $count,
    'left' => null,
    'right' => null,
  ];
}

// 构造树的层级关系,思想见wiki:https://zh.wikipedia.org/wiki/%E9%9C%8D%E5%A4%AB%E6%9B%BC%E7%BC%96%E7%A0%81
$size = count($huffmanTree);
for ($i = 0; $i !== $size - 1; $i++) {
  uasort($huffmanTree, function ($a, $b) {
    if ($a['v'] === $b['v']) {
      return 0;
    }
    return $a['v'] < $b['v'] "htmlcode">
function buildDict($elem, $code = '', &$dict) {
  if (isset($elem['k'])) {
    $dict[$elem['k']] = $code;
  } else {
    buildDict($elem['left'], $code.'0', $dict);
    buildDict($elem['right'], $code.'1', $dict);
  }
}
$dict = [];
buildDict($root, '', $dict);

写文件

运用字典将文件内容进行编码,并写入文件。将Huffman编码写入文件的有几个注意的地方:

将编码字典和编码内容一起写入文件后,就没法区分他们的边界了,因此需要在文件开始写入他们各自占用的字节数

PHP提供的 fwrite() 函数一次能写入 8-bit(一个字节)或者是 8的整数倍个bit。但Huffman编码中,一个字符可能只使用 1-bit 表示,PHP不支持只往文件中写入 1-bit 这种操作。所以需要我们自行对编码进行拼接,每凑齐 8-bit 才写入文件。

PHP实现Huffman编码/解码的示例代码

每凑齐8-bit才写入

与第二条类似,最终形成的文件大小一定是 8-bit 的整数倍。所以如果整个编码的大小是 8001-bit的话,还要在末尾补上 7个 0

$dictString = serialize($dict);
// 写入字典和编码各自占用的字节数
$header = pack('VV', strlen($dictString), strlen($input));
fwrite($outFile, $header);
// 写入字典本身
fwrite($outFile, $dictString);

// 写入编码的内容
$buffer = '';
$i = 0;
while (isset($input[$i])) {
  $buffer .= $dict[$input[$i]];
  while (isset($buffer[7])) {
    $char = bindec(substr($buffer, 0, 8));
    fwrite($outFile, chr($char));
    $buffer = substr($buffer, 8);
  }
  $i++;
}
// 末尾的内容如果没有凑齐 8-bit,需要自行补齐
if (!empty($buffer)) {
  $char = bindec(str_pad($buffer, 8, '0'));
  fwrite($outFile, chr($char));
}
fclose($outFile);

解码

Huffman编码的解码相对简单:先读取编码字典,然后根据字典解码出原始字符。

解码过程有个问题需要注意:由于我们在编码过程中,在文件末尾补齐了几个0-bit,如果这些 0-bit 在字典中恰巧是某个字符的编码时,就会造成错误的解码。

所以解码过程中,当已解码的字符数达到文档长度时,就要停止解码。

<"_blank" href="https://justgetflux.com/" rel="external nofollow" >f.lux的安装程序 ,试验结果如下:

编码前: 770,384 字节

编码后: 773,076 字节

编码后反而占用了更大的空间,一方面是由于我们存储字典时,并没有做额外的处理,占用了不少空间。另一方面,二进制文件中,各个字符出现的概率相对比较平均,无法发挥Huffman编码的优势。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com