前言

这篇文章是介绍 二叉树 和 二分搜索树,然后通过 PHP 代码定义一下 二分搜索树 的节点,使用递归思想操作向二分搜索树添加元素,然后实现了递归判断二分搜索树上是否包含某个元素,最后分别实现了前序遍历、中序遍历、后序遍历 二分搜索树。

1.二叉树

1.1 二叉树图示

数据结构之利用PHP实现二分搜索树

1.2 二叉树节点定义

//二叉树具有唯一根节点
class Node{
 $e; //节点元素
 $left; //左儿子
 $right;//右儿子
}

Tips:二叉树每个节点最多有两个儿子,每个节点最多有一个父亲。

1.3 二叉树的特点

  • 二叉树具有天然的递归结构,每个节点的左儿子或右儿子也是 二叉树。
  • 二叉树不一定是满的,可能只有左儿子或又儿子。
  • 一个节点或 NULL 也可以看做一个二叉树。

2.二分搜索树

2.1 二分搜索树特点

  • 二分搜索树是二叉树。
  • 每个节点的元素的值都要大于左儿子所有节点的值。
  • 每个节点的元素的值都要小于右儿子所有节点的值。
  • 每个子树也是二分搜索树。
  • 二分搜索树查询速度快。
  • 存储的元素必须要有比较性。

2.2 二分搜索树图示

数据结构之利用PHP实现二分搜索树

2.3 PHP 代码定义节点

class Node
{
 public $e;
 public $left = null;
 public $right = null;
 /**
  * 构造函数 初始化节点数据
  * Node constructor.
  * @param $e
  */
 public function __construct($e) {
  $this->e = $e;
 }
}

2.4 向二分搜索树添加元素

下面展示的的使用递归思想向二分搜索树添加元素,其中 add($e) 方法表示想二分搜索树添加元素 $e,recursionAdd(Node $root, $e) 是一个递归函数,表示使用递归向二分搜索树添加元素:

 /**
  * 向二分搜索树添加元素
  * @param $e
  */
 public function add($e) {
  $this->root = $this->recursionAdd($this->root, $e);
 }
 /**
  * 递归向二分搜索树添加元素
  * @param Node $root
  * @param $e
  */
 public function recursionAdd(Node $root, $e) {
  if ($root == null) { //若节点为空则添加元素 并且返回当前节点信息
   $this->size++;
   $root = new Node($e);
  } elseif ($e < $root->e) { //若元素小于当前节点元素 则向左节点递归添加元素
   $root->left = $this->recursionAdd($root->left, $e);
  } elseif ($e > $root->e) { //若元素大于当前节点元素 则向右节点递归添加元素
   $root->right = $this->recursionAdd($root->right, $e);
  } //若元素等于当前节点元素 则什么都不做
 }

Tips:这里的二分搜索树不包含重复元素,如果想要包含重复元素,可以定义每个左儿子所有元素小于等于父亲节点,或者每个节点右儿子所有节点元素大于等于父亲节点。

2.5 查询二分搜索树是否包含某个元素

下面展示的的使用递归思想查询二分搜索树元素是否包含某个元素,其中 contains($e) 方法表示查询二分搜索树是否包含元素 $e,recursionContains(Node $root, $e) 是一个递归函数,表示使用递归查询二分搜索树元素:

 /**
  * 判断二分搜索树是否包含某个元素
  * @param $e
  * @return bool
  */
 public function contains($e): bool {
  return $this->recursionContains($this->root, $e);
 }
 /**
  * 递归判断二分搜索树是否包含某元素
  * @param $root
  * @param $e
  * @return bool
  */
 private function recursionContains(Node $root, $e): bool {
  if ($root == null) { //若当前节点为空 则表示不存在元素 $e
   return false;
  } elseif ($e == $root->e) { //若 $e 等于当前节点元素,则表示树包含元素 $e
   return true;
  } elseif ($e < $root->e) { //若 $e 小于当前节点元素,则去左儿子树递归查询是否包含节点
   return $this->recursionContains($root->left, $e);
  } else { //若 $e 大于当前节点元素,则去右儿子树递归查询是否包含节点
   return $this->recursionContains($root->right, $e);
  }
 }

Tips:递归的时候会比较元素和节点的值,递归的时候判断元素大小相当于 “指路”,最终指向到的位置就是判断是否包含元素是否存在的依据。

2.6 二分搜索树前序遍历

前序遍历操作就是把所有节点都访问一次,前序遍历 是先访问节点,再递归遍历左儿子树,然后再递归遍历右儿子树:

 /**
  * 前序遍历
  */
 public function preTraversal() {
  $this->recursionPreTraversal($this->root, 0);
 }
 /**
  * 前序遍历的递归
  */
 public function recursionPreTraversal($root, $sign_num) {
  echo $this->getSign($sign_num);//打印深度
  if ($root == null) {
   echo "null<br>";
   return;
  }
  echo $root->e . "<br>"; //打印当前节点元素
  $this->recursionPreTraversal($root->left, $sign_num + 1);
  $this->recursionPreTraversal($root->right, $sign_num + 1);
 }

下面是打印结果:

<"htmlcode">

 /**
  * 中序遍历
  */
 public function midTraversal() {
  $this->recursionMidTraversal($this->root, 0);
 }
 /**
  * 中序遍历的递归
  */
 public function recursionMidTraversal($root, $sign_num) {
  if ($root == null) {
   echo $this->getSign($sign_num);//打印深度
   echo "null<br>";
   return;
  }
  $this->recursionMidTraversal($root->left, $sign_num + 1);
  echo $this->getSign($sign_num);//打印深度
  echo $root->e . "<br>";
  $this->recursionMidTraversal($root->right, $sign_num + 1);
 }

下面是打印结果:

<"htmlcode">

 /**
  * 后序遍历
  */
 public function rearTraversal() {
  $this->recursionRearTraversal($this->root, 0);
 }
 /**
  * 后序遍历的递归
  */
 public function recursionRearTraversal($root, $sign_num) {
  if ($root == null) {
   echo $this->getSign($sign_num);//打印深度
   echo "null<br>";
   return;
  }
  $this->recursionRearTraversal($root->left, $sign_num + 1);
  $this->recursionRearTraversal($root->right, $sign_num + 1);
  echo $this->getSign($sign_num);//打印深度
  echo $root->e . "<br>";
 }

下面是打印结果:

<"external nofollow" target="_blank" href="https://gitee.com/love-for-poetry/data-structure">https://gitee.com/love-for-po...

总结

华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com