全排列是一种时间复杂度为:O(n!)的算法,前两天给学生讲课,无意间想到这个问题,回来总结了一下,可以由7种算法求解,其中动态循环类似回溯算法,实现起来比较繁琐,故总结了6种,以飨读者。所有算法均使用JavaScript编写,可直接运行。
算法一:交换(递归)
复制代码 代码如下:
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
    <title>Full Permutation(Recursive Swap) - Mengliao Software</title> 
</head> 
<body> 
<p>Full Permutation(Recursive Swap)<br /> 
Mengliao Software Studio - Bosun Network Co., Ltd.<br /> 
2011.05.24</p> 
<script type="text/javascript"> 
/* 
全排列(递归交换)算法 
1、将第一个位置分别放置各个不同的元素; 
2、对剩余的位置进行全排列(递归); 
3、递归出口为只对一个元素进行全排列。 
*/
function swap(arr,i,j) { 
    if(i!=j) { 
        var temp=arr[i]; 
        arr[i]=arr[j]; 
        arr[j]=temp; 
    } 

var count=0; 
function show(arr) { 
    document.write("P<sub>"+ ++count+"</sub>: "+arr+"<br />"); 

function perm(arr) { 
    (function fn(n) { //为第n个位置选择元素 
        for(var i=n;i<arr.length;i++) { 
            swap(arr,i,n); 
            if(n+1<arr.length-1) //判断数组中剩余的待全排列的元素是否大于1个 
                fn(n+1); //从第n+1个下标进行全排列 
            else
                show(arr); //显示一组结果 
            swap(arr,i,n); 
        } 
    })(0); 

perm(["e1","e2","e3","e4"]); 
</script> 
</body> 
</html>

算法二:链接(递归)
复制代码 代码如下:
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
    <title>Full Permutation(Recursive Link) - Mengliao Software</title> 
</head> 
<body> 
<p>Full Permutation(Recursive Link)<br /> 
Mengliao Software Studio - Bosun Network Co., Ltd.<br /> 
2012.03.29</p> 
<script type="text/javascript"> 
/* 
全排列(递归链接)算法 
1、设定源数组为输入数组,结果数组存放排列结果(初始化为空数组); 
2、逐一将源数组的每个元素链接到结果数组中(生成新数组对象); 
3、从原数组中删除被链接的元素(生成新数组对象); 
4、将新的源数组和结果数组作为参数递归调用步骤2、3,直到源数组为空,则输出一个排列。 
*/
var count=0; 
function show(arr) { 
    document.write("P<sub>"+ ++count+"</sub>: "+arr+"<br />"); 

function perm(arr) { 
    (function fn(source, result) { 
        if (source.length == 0) 
            show(result); 
        else
            for (var i = 0; i < source.length; i++) 
                fn(source.slice(0, i).concat(source.slice(i + 1)), result.concat(source[i])); 
    })(arr, []); 

perm(["e1", "e2", "e3", "e4"]); 
</script> 
</body> 
</html>

算法三:回溯(递归)
复制代码 代码如下:
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
    <title>Full Permutation(Recursive Backtrack) - Mengliao Software</title> 
</head> 
<body> 
<p>Full Permutation(Recursive Backtrack)<br /> 
Mengliao Software Studio - Bosun Network Co., Ltd.<br /> 
2012.03.29</p> 
<script type="text/javascript"> 
/* 
全排列(递归回溯)算法 
1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列; 
2、建立递归函数,用来搜索第n个位置; 
3、第n个位置搜索方式与八皇后问题类似。 
*/
var count = 0; 
function show(arr) { 
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />"); 

function seek(index, n) { 
    if (n >= 0) //判断是否已回溯到了第一个位置之前,即已经找到了所有位置排列 
        if (index[n] < index.length - 1) { //还有下一个位置可选 
            index[n]++; //选择下一个位置 
            if ((function () { //该匿名函数判断该位置是否已经被选择过 
                for (var i = 0; i < n; i++) 
                    if (index[i] == index[n]) return true; //已选择 
                return false; //未选择 
            })()) 
                return seek(index, n); //重新找位置 
            else
                return true; //找到 
        } 
        else { //当前无位置可选,进行递归回溯 
            index[n] = -1; //取消当前位置 
            if (seek(index, n - 1)) //继续找上一个位置 
                return seek(index, n); //重新找当前位置 
            else
                return false; //已无位置可选 
        } 
    else
        return false; 

function perm(arr) { 
    var index = new Array(arr.length); 
    for (var i = 0; i < index.length; i++) 
        index[i] = -1; //初始化所有位置为-1,以便++后为0 
    for (i = 0; i < index.length - 1; i++) 
        seek(index, i); //先搜索前n-1个位置 
    while (seek(index, index.length - 1)) { //不断搜索第n个位置,即找到所有位置排列 
        var temp = []; 
        for (i = 0; i < index.length; i++) //将位置之转换为元素 
            temp.push(arr[index[i]]); 
        show(temp); 
    } 

perm(["e1", "e2", "e3", "e4"]); 
</script> 
</body> 
</html>

算法四:回溯(非递归)
复制代码 代码如下:
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
    <title>Full Permutation(Non-recursive Backtrack) - Mengliao Software</title> 
</head> 
<body> 
<p> 
Full Permutation(Non-recursive Backtrack)<br /> 
Mengliao Software Studio - Bosun Network Co., Ltd.<br /> 
2012.03.29</p> 
<script type="text/javascript"> 
/* 
全排列(非递归回溯)算法 
1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列; 
2、第n个位置搜索方式与八皇后问题类似。 
*/
var count = 0; 
function show(arr) { 
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />"); 

function seek(index, n) { 
    var flag = false, m = n; //flag为找到位置排列的标志,m保存正在搜索哪个位置 
    do { 
        index[n]++; 
        if (index[n] == index.length) //已无位置可用 
            index[n--] = -1; //重置当前位置,回退到上一个位置 
        else if (!(function () { 
            for (var i = 0; i < n; i++) 
                if (index[i] == index[n]) return true; 
            return false; 
        })()) //该位置未被选择 
            if (m == n) //当前位置搜索完成 
                flag = true; 
            else
                n++; 
    } while (!flag && n >= 0) 
    return flag; 

function perm(arr) { 
    var index = new Array(arr.length); 
    for (var i = 0; i < index.length; i++) 
        index[i] = -1; 
    for (i = 0; i < index.length - 1; i++) 
        seek(index, i); 
    while (seek(index, index.length - 1)) { 
        var temp = []; 
        for (i = 0; i < index.length; i++) 
            temp.push(arr[index[i]]); 
        show(temp); 
    } 

perm(["e1", "e2", "e3", "e4"]); 
</script> 
</body> 
</html>

算法五:排序(非递归)
复制代码 代码如下:
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
    <title>Full Permutation(Non-recursive Sort) - Mengliao Software</title> 
</head> 
<body> 
<p> 
Full Permutation(Non-recursive Sort)<br /> 
Mengliao Software Studio - Bosun Network Co., Ltd.<br /> 
2012.03.30</p> 
<script type="text/javascript"> 
/* 
全排列(非递归求顺序)算法 
1、建立位置数组,即对位置进行排列,排列成功后转换为元素的排列; 
2、按如下算法求全排列: 
设P是1~n(位置编号)的一个全排列:p = p1,p2...pn = p1,p2...pj-1,pj,pj+1...pk-1,pk,pk+1...pn 
(1)从排列的尾部开始,找出第一个比右边位置编号小的索引j(j从首部开始计算),即j = max{i | pi < pi+1} 
(2)在pj的右边的位置编号中,找出所有比pj大的位置编号中最小的位置编号的索引k,即 k = max{i | pi > pj} 
   pj右边的位置编号是从右至左递增的,因此k是所有大于pj的位置编号中索引最大的 
(3)交换pj与pk 
(4)再将pj+1...pk-1,pk,pk+1...pn翻转得到排列p' = p1,p2...pj-1,pj,pn...pk+1,pk,pk-1...pj+1 
(5)p'便是排列p的下一个排列 

例如: 
24310是位置编号0~4的一个排列,求它下一个排列的步骤如下: 
(1)从右至左找出排列中第一个比右边数字小的数字2; 
(2)在该数字后的数字中找出比2大的数中最小的一个3; 
(3)将2与3交换得到34210; 
(4)将原来2(当前3)后面的所有数字翻转,即翻转4210,得30124; 
(5)求得24310的下一个排列为30124。 
*/
var count = 0; 
function show(arr) { 
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />"); 

function swap(arr, i, j) { 
    var t = arr[i]; 
    arr[i] = arr[j]; 
    arr[j] = t; 


function sort(index) { 
    for (var j = index.length - 2; j >= 0 && index[j] > index[j + 1]; j--) 
        ; //本循环从位置数组的末尾开始,找到第一个左边小于右边的位置,即j 
    if (j < 0) return false; //已完成全部排列 
    for (var k = index.length - 1; index[k] < index[j]; k--) 
        ; //本循环从位置数组的末尾开始,找到比j位置大的位置中最小的,即k 
    swap(index, j, k); 
    for (j = j + 1, k = index.length - 1; j < k; j++, k--) 
        swap(index, j, k); //本循环翻转j+1到末尾的所有位置 
    return true; 

function perm(arr) { 
    var index = new Array(arr.length); 
    for (var i = 0; i < index.length; i++) 
        index[i] = i; 
    do { 
        var temp = []; 
        for (i = 0; i < index.length; i++) 
            temp.push(arr[index[i]]); 
        show(temp); 
    } while (sort(index)); 

perm(["e1", "e2", "e3", "e4"]); 
</script> 
</body> 
</html>

算法六:求模(非递归)
复制代码 代码如下:
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> 
    <title>Full Permutation(Non-recursive Modulo) - Mengliao Software</title> 
</head> 
<body> 
<p>Full Permutation(Non-recursive Modulo)<br /> 
Mengliao Software Studio - Bosun Network Co., Ltd.<br /> 
2012.03.29</p> 
<script type="text/javascript"> 
/* 
全排列(非递归求模)算法 
1、初始化存放全排列结果的数组result,与原数组的元素个数相等; 
2、计算n个元素全排列的总数,即n!; 
3、从>=0的任意整数开始循环n!次,每次累加1,记为index; 
4、取第1个元素arr[0],求1进制的表达最低位,即求index模1的值w,将第1个元素(arr[0])插入result的w位置,并将index迭代为index\1; 
5、取第2个元素arr[1],求2进制的表达最低位,即求index模2的值w,将第2个元素(arr[1])插入result的w位置,并将index迭代为index\2; 
6、取第3个元素arr[2],求3进制的表达最低位,即求index模3的值w,将第3个元素(arr[2])插入result的w位置,并将index迭代为index\3; 
7、…… 
8、直到取最后一个元素arr[arr.length-1],此时求得一个排列; 
9、当index循环完成,便求得所有排列。 

例: 
求4个元素["a", "b", "c", "d"]的全排列, 共循环4!=24次,可从任意>=0的整数index开始循环,每次累加1,直到循环完index+23后结束; 
假设index=13(或13+24,13+2*24,13+3*24…),因为共4个元素,故迭代4次,则得到的这一个排列的过程为: 
第1次迭代,13/1,商=13,余数=0,故第1个元素插入第0个位置(即下标为0),得["a"]; 
第2次迭代,13/2, 商=6,余数=1,故第2个元素插入第1个位置(即下标为1),得["a", "b"]; 
第3次迭代,6/3, 商=2,余数=0,故第3个元素插入第0个位置(即下标为0),得["c", "a", "b"]; 
第4次迭代,2/4,商=0,余数=2, 故第4个元素插入第2个位置(即下标为2),得["c", "a", "d", "b"]; 
*/
var count = 0; 
function show(arr) { 
    document.write("P<sub>" + ++count + "</sub>: " + arr + "<br />"); 

function perm(arr) { 
    var result = new Array(arr.length); 
    var fac = 1; 
    for (var i = 2; i <= arr.length; i++) 
        fac *= i; 
    for (index = 0; index < fac; index++) { 
        var t = index; 
        for (i = 1; i <= arr.length; i++) { 
            var w = t % i; 
            for (j = i - 1; j > w; j--) 
                result[j] = result[j - 1]; 
            result[w] = arr[i - 1]; 
            t = Math.floor(t / i); 
        } 
        show(result); 
    } 

perm(["e1", "e2", "e3", "e4"]); 
</script> 
</body> 
</html>

上面的六种算法有些是对位置进行排列,例如回溯、排序等,因为这样可以适应各种类型的元素,而非要求待排列元素一定是数字或字母等。
华山资源网 Design By www.eoogi.com
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
华山资源网 Design By www.eoogi.com

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?